Response of riverbed evolution of Yichang-Jianli reach of the Yangtze River to water and sediment conditions of Yichang Station
-
摘要: 三峡水库蓄水运行以来宜昌站水沙条件发生了明显改变,驱动下游河床发生新一轮调整。采用回归分析、机理分析等方法,探究了三峡工程运行前后长江宜昌—沙市段及沙市—监利段河床冲淤变化对宜昌水沙站条件的响应规律。结果表明:宜昌—沙市段冲淤量与宜昌站水沙指标间的关联度强于沙市—监利段且前者关联度随时间增强;研究河段月尺度河床演变对宜昌站水沙条件不存在明显的滞后响应;基于宜昌站月均流量分别构建的两个河段冲淤量回归模型可较好反映河床冲淤变化;根据所构建模型的模拟,三峡工程运行前宜昌—沙市段呈“小水小冲、大水大淤”的冲淤格局,冲淤转换临界宜昌站流量约为23 500 m3/s,三峡水库蓄水后该河段全面冲刷,呈“小水小冲、大水大冲”,但随着床沙粗化冲刷量有所下降;三峡水库蓄水前沙市—监利段亦呈“小水小冲,大水大淤”的冲淤格局,冲淤转换临界宜昌站流量约为22 500 m3/s,且同流量下的淤积量大于宜昌—沙市段,三峡水库蓄水后宜昌站小水时该河段冲刷量略大于上游河段,但宜昌站大水时该河段冲刷量明显更小。Abstract: Since the first impoundment of the Three Gorges Reservoir (TGR), water and sediment conditions of Yichang station have undergone a significant change, which has triggered a new round of riverbed adjustment of downstream reaches. In this study, regression analysis, mechanism analysis and other methods were used to investigate the response of the riverbed evolution of Yichang-Shashi reach (YSR) and Shashi-Jianli reach (SJR) to Yichang water and sediment conditions before and after the TGR. Results show that the correlation between scouring and silting amount (SSA) of YSR and Yichang water and sediment indexes is stronger than that of the SJR and the correlation of the former reach becomes stronger with time. On a monthly basis, the delayed response of riverbed evolution to Yichang water and sediment conditions cannot be observed for both YSR and SJR. Based on monthly average Yichang discharge, the univariate regression model for SSA can well reflect the riverbed evolution of both river reaches. According to the developed models, YSR riverbed before the TGR shows the pattern of “weak scouring under small discharge and strong silting under large discharge” and the critical Yichang discharge corresponding to the change of state is about 23,500 m3/s. After the TGR, YSR riverbed shows the characteristics of “weak scouring under small discharge and strong scouring under large discharge”. The scouring amount of YSR gradually decreases due to riverbed coarsening. SJR riverbed has the same evolution pattern with YSR riverbed before the TGR. However, its critical Yichang discharge of state change is slightly smaller (about 22,500 m3/s) and its silting amount is larger than that of YSR under the same Yichang discharge. After the TGR, SJR silting amount is slightly larger than that of YSR when Yichang discharge is small, while the former becomes much smaller than the latter when Yichang discharge is large.
-
表 1 宜昌站水沙条件表征指标
Table 1 Indexes of water and sediment conditions of Yichang station
指标序号 水沙条件表征指标 指标序号 水沙条件表征指标 指标序号 水沙条件表征指标 指标序号 水沙条件表征指标 1 平均流量(m3/s) 5 最大含沙量(kg/m3) 9 最小输沙率(kg/s) 13 平均流量/平均含沙量(m6/(kg·s)) 2 最大流量(m3/s) 6 最小含沙量(kg/m3) 10 平均流量2/平均含沙量(m9/(kg·s2)) 14 最大流量/最小流量(−) 3 最小流量(m3/s) 7 平均输沙率(kg/s) 11 平均含沙量/平均流量2(kg·s2/m9) 15 最大含沙量/最小含沙量(−) 4 平均含沙量(kg/m3) 8 最大输沙率(kg/s) 12 平均含沙量/平均流量(kg·s/m6) 16 最大输沙率/最小输沙率(−) 表 2 不同河段月冲淤量拟合曲线信息
Table 2 Fitting curve information for monthly scouring and silting amount of different river reaches
河段 时段 拟合线y=ax2+bx+c R2 a b c 宜昌—沙市段 三峡蓄水运用前 0.026 −681.175 1 366 936.000 0.472 2003年6月—2010年10月 −0.003 −192.957 536 933.521 0.784 2010年11月—2016年12月 −0.010 110.979 −767 995.481 0.908 沙市—监利段 三峡蓄水运用前 0.036 −961.895 3 381 697.538 0.514 2003年6月—2010年10月 0.011 −424.198 1 184 660.943 0.331 2010年11月—2016年12月 0.010 −405.504 1 492 827.979 0.423 注:y为河段月冲淤量(t);x为宜昌站月均流量(m3/s);a,b,c为系数。 -
[1] 黄莉. 监利河段水沙变化及其对该河段河床横断面形态影响机理研究[D]. 武汉: 长江科学院, 2008. HUANG Li. Mechanism research of water & sediment load variation impact on transversal profile in Jianli River reach[D]. Wuhan: Changjiang River Scientific Research Institute, 2008. (in Chinese)
[2] 许炯心. 长江宜昌-武汉河段泥沙年冲淤量对水沙变化的响应[J]. 地理学报,2005,60(2):337-348. (XU Jiongxin. Response of channel sediment budget to flow and sediment inputs: an example of the Yichang-Wuhan Reach, Yangtze River[J]. Acta Geographica Sinica, 2005, 60(2): 337-348. (in Chinese) doi: 10.3321/j.issn:0375-5444.2005.02.017 [3] 许炯心. 含沙量和悬沙粒径变化对长江宜昌-汉口河段年冲淤量的影响[J]. 水科学进展,2006,17(1):67-73. (XU Jiongxin. Influence of variations in suspended sediment concentration and grain size on sediment deposition of Yichang-Hankou reach of Yangtze River[J]. Advances in Water Science, 2006, 17(1): 67-73. (in Chinese) doi: 10.3321/j.issn:1001-6791.2006.01.011 [4] 吴保生. 冲积河流河床演变的滞后响应模型-I模型建立[J]. 泥沙研究,2008(6):1-7. (WU Baosheng. Delayed response model for fluvial processes of alluvial rivers-I model development[J]. Journal of Sediment Research, 2008(6): 1-7. (in Chinese) doi: 10.3321/j.issn:0468-155X.2008.06.001 [5] 吴保生. 冲积河流河床演变的滞后响应模型-II模型应用[J]. 泥沙研究,2008(6):30-37. (WU Baosheng. Delayed response model for fluvial processes of alluvial rivers-II model applications[J]. Journal of Sediment Research, 2008(6): 30-37. (in Chinese) doi: 10.3321/j.issn:0468-155X.2008.06.005 [6] 李凌云. 黄河平滩流量的计算方法及应用研究[D]. 北京: 清华大学, 2010. LI Lingyun. Study on bankfull discharge prediction and its application to the Yellow River[D]. Beijing: Tsinghua University, 2010. (in Chinese)
[7] WU B S, XIA J Q, FU X D, et al. Effect of altered flow regime on bankfull area of the Lower Yellow River, China[J]. Earth Surface Processes and Landforms, 2008, 33(10): 1585-1601.
[8] 廖治棋. 荆江河段平滩面积对水沙条件变化的滞后响应研究[D]. 武汉: 长江科学院, 2014. LIAO Zhiqi. A study of delayed response of water & sediment load variation impact on bankfull area in Jingjiang River Reach[D]. Wuhan: Changjiang River Scientific Research Institute, 2014. (in Chinese)
[9] 章运超, 李凌云, 范北林, 等. 长江沙市段断面面积对水沙变异的滞后响应研究[J]. 长江科学院院报,2016,33(7):1-5. (ZHANG Yunchao, LI Lingyun, FAN Beilin, et al. Delayed response of cross section area to variable incoming flow and sediment at Shashi segment of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(7): 1-5. (in Chinese) doi: 10.11988/ckyyb.20150336 [10] 吕宜卫, 谈广鸣, 郑珊, 等. 荆江河段河床冲淤计算滞后响应模型改进[J]. 泥沙研究,2018,43(1):9-14. (LÜ Yiwei, TAN Guangming, ZHENG Shan, et al. Improvement of river evolution delay response model in the Jingjiang Reach[J]. Journal of Sediment Research, 2018, 43(1): 9-14. (in Chinese) [11] 夏军强, 宗全利, 邓珊珊, 等. 三峡工程运用后荆江河段平滩河槽形态调整特点[J]. 浙江大学学报(工学版),2015,49(2):238-245. (XIA Junqiang, ZONG Quanli, DENG Shanshan, et al. Adjustments in reach-scale bankfull channel geometry of Jingjiang reach after operation of Three Gorges Project[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(2): 238-245. (in Chinese) [12] XIA J Q, DENG S S, LU J Y, et al. Dynamic channel adjustments in the Jingjiang Reach of the Middle Yangtze River[J]. Scientific Reports, 2016, 6: 22802.
[13] XIA J Q, DENG S S, ZHOU M R, et al. Geomorphic response of the Jingjiang Reach to the Three Gorges Project operation[J]. Earth Surface Processes and Landforms, 2017, 42(6): 866-876.
[14] 彭玉明, 夏军强, 彭佳, 等. 荆江近岸河床演变对水沙条件的响应探讨[J]. 水文,2018,38(5):11-16. (PENG Yuming, XIA Junqiang, PENG Jia, et al. Response of the nearshore riverbed evolution to flow and sediment conditions in Jingjiang Reach[J]. Journal of China Hydrology, 2018, 38(5): 11-16. (in Chinese) doi: 10.3969/j.issn.1000-0852.2018.05.003 [15] 杨云平, 张明进, 李义天, 等. 长江三峡水坝下游河道悬沙恢复和床沙补给机制[J]. 地理学报,2016,71(7):1241-1254. (YANG Yunping, ZHANG Mingjin, LI Yitian, et al. Suspended sediment recovery and bedsand compensation mechanism affected by the Three Gorges Project[J]. Acta Geographica Sinica, 2016, 71(7): 1241-1254. (in Chinese) [16] 朱玲玲, 许全喜, 陈子寒. 新水沙条件下荆江河段强冲刷响应研究[J]. 应用基础与工程科学学报,2018,26(1):85-97. (ZHU Lingling, XU Quanxi, CHEN Zihan. Extraordinary scour of Jingjiang Reach downstream from Three Gorges Project[J]. Journal of Basic Science and Engineering, 2018, 26(1): 85-97. (in Chinese) [17] 许全喜. 三峡工程蓄水运用前后长江中下游干流河道冲淤规律研究[J]. 水力发电学报,2013,32(2):146-154. (XU Quanxi. Study of sediment deposition and erosion patterns in the middle and downstream Changjiang mainstream after impoundment of TGR[J]. Journal of Hydroelectric Engineering, 2013, 32(2): 146-154. (in Chinese)