Abstract:
Taking Wenzhou frame seawall as the background, the finite element strength reduction method is used to analyze the influence of the structural parameters of dense row piles and the erosion around the pile foundation on the deformation and stability of the frame seawall. The results show that with the increase of the length of dense row piles, the horizontal displacement of dense row piles decreases; the influence of the diameter of dense row piles on the horizontal displacement of piles is small; the spacing of dense row piles has little effect on the horizontal displacement of piles; and the horizontal displacement of dense row piles increases with the increase of erosion depth around piles. The maximum locations occur at the top of the pile. With the increase of the length of dense row piles, the overall stability safety factor of frame seawall increases; with the increase of the diameter of dense row piles, the overall stability safety factor of frame seawall increases; when the spacing of dense row piles is 2.1 m, the overall stability safety factor of frame seawall is the smallest.