混凝土坝坝体渗漏水下修复处理及效果评价

李铮, 李宏恩, 张安富, 刘定忠

李铮,李宏恩,张安富,等. 混凝土坝坝体渗漏水下修复处理及效果评价[J]. 水利水运工程学报,2022(1):137-143. DOI: 10.12170/20210202003
引用本文: 李铮,李宏恩,张安富,等. 混凝土坝坝体渗漏水下修复处理及效果评价[J]. 水利水运工程学报,2022(1):137-143. DOI: 10.12170/20210202003
(LI Zheng, LI Hongen, ZHANG Anfu, et al. Dam body leakage subaqueous remediation and evaluation of concrete dam[J]. Hydro-Science and Engineering, 2022(1): 137-143. (in Chinese)). DOI: 10.12170/20210202003
Citation: (LI Zheng, LI Hongen, ZHANG Anfu, et al. Dam body leakage subaqueous remediation and evaluation of concrete dam[J]. Hydro-Science and Engineering, 2022(1): 137-143. (in Chinese)). DOI: 10.12170/20210202003

混凝土坝坝体渗漏水下修复处理及效果评价

基金项目: 国家重点研发计划课题资助项目(2016YFC0401809,2017YFC0405006);中央级公益性科研院所基本科研业务费资助项目(Y717012,Y720008)
详细信息
    作者简介:

    李 铮(1980—),男,江苏南京人,高级工程师,硕士,主要从事大坝安全、岩土工程方面研究。E-mail:lizheng@nhri.cn

  • 中图分类号: TV642.4

Dam body leakage subaqueous remediation and evaluation of concrete dam

  • 摘要: 混凝土坝坝体渗漏会影响大坝的安全性和耐久性,以云南龙江水电站大坝坝体渗漏水下修复处理为背景,详细介绍修复处理过程并对处理效果进行评述。为探明坝体入渗点部位,首先采用温度测试法初步查找渗漏范围,再采取水下扩大检查的方式明确渗漏点具体位置。通过水下检查最终确定9#坝段832.00 m和816.00 m、10#坝段830.00 m和808.00 m层间缝混凝土存在质量缺陷,为坝体渗漏通道的主要入渗点。然后,采用水下处理的方式进行坝体修复,从源头对入渗点进行封堵,坝体经修复处理后,渗漏量由近年来最大值74.85 L/s降低至正常蓄水位下渗漏量仅6.04 L/s,处理效果较好。从坝体渗漏水下检查情况来看,层间缝是混凝土坝坝体渗漏的主要通道。层间缝是贯穿于坝体浇筑全过程的施工缝,应在施工过程中加强质量控制,以保证各层混凝土之间的充分结合。所采用的渗漏水下修复处理技术可有效解决坝体局部渗漏缺陷问题,可供类似工程借鉴。
    Abstract: Leakage of concrete dam body affects the safety and durability of the dam. Based on the dam body leakage remediation of Longjiang hydropower station in Yunnan Province, the remediation of the dam is introduced in detail, and the remediation result is discussed. In order to find the possible leakage entrance, temperature tracing is applied for finding the range of leakage entrance, and then the specific leakage point is indicated by subaqueous extended check. Through subaqueous check, defects in the concrete dam body between the layers are detected. The main entrance points of leakage passage are located at elevation 832.00 m and 816.00 m in dam block 9#, and 830.00 m and 808.00 m in dam block 10#. Therefore, subaqueous remediation is adopted for the dam body, and leakage entrance is blocked from source. After the remediation of the dam body, leakage decreases from maximum 74.85 L/s in recent years to 6.04 L/s under normal water level. From the subaqueous check of the dam body before remediation, the seams between layers are identified as the main way of leakage in the concrete dam. The seams between layers are produced during the whole construction process. Hence, it is necessary to enhance the quality control during construction process to ensure the bond of each layer in concrete. Above all, partial leakage defect could be solved by the leakage subaqueous remediation method provided here, and the practice could be used for similar projects.
  • 图  1   龙江水电站大坝坝体渗漏量过程线

    Figure  1.   Hydrograph of leakage of dam in Longjiang hydropower station

    图  2   坝体廊道内主要渗水点

    Figure  2.   Main leakage points in dam corridor

    图  3   10#坝段渗漏点示踪检查

    Figure  3.   Leakage point tracer check in block 10#

    图  4   渗漏点封堵完成后结构示意

    Figure  4.   Sketch of structure after blocking of leakage point

    图  5   龙江水电站坝体渗漏量过程线(渗漏处理前后)

    Figure  5.   Hydrograph of leakage of dam in Longjiang hydropower station (before and after leakage remediation)

    表  1   大坝历年最大渗漏量和水位对照

    Table  1   Comparison of maximum leakage and water level over the years

    日期渗漏量/ (L·s−1)变化量/ (L·s−1)当日水位/m日期渗漏量/ (L·s−1)变化量/ (L·s−1)当日水位/m
    2012-12-31 25.15 868.16 2017-12-07 61.82 +11.61 869.94
    2013-09-13 36.64 +11.49 871.99 2018-10-19 68.79 +6.96 872.41
    2014-08-25 37.45 +0.81 870.71 2019-08-03 74.85 +6.07 870.57
    2015-12-31 39.43 +1.98 869.03 2020-01-24 73.25 −1.60 868.79
    2016-10-22 50.21 +10.78 869.48
    下载: 导出CSV

    表  2   水下检查情况(库水位846.00~847.00 m)

    Table  2   Subaqueous check information (water level of 846.00~847.00 m)

    序号部位高程/m渗漏检查结果
    19#坝段层间缝816.00~832.00832.00 m层间缝,存在明显表面破损、冲蚀、淘空缺陷,长度约2 m。
    816.00 m高程层间缝,存在点状轻微渗漏。
    210#坝段层间缝808.00~830.00808.00 m层间缝:表面存在明显破损、淘空缺陷和明显的渗漏点,表面吸附杂物和树枝,长约2 m。
    830.00 m层间缝:存在明显表面破损,淘空现象,渗漏较明显,缺陷部位呈条带状零星分布,长约2 m。
    下载: 导出CSV

    表  3   坝体渗漏处理进度与对应渗漏量

    Table  3   Comparison between leakage and remediation process

    日期处理进度水位/m渗漏量/(L·s−1日期处理进度水位/m渗漏量/(L·s−1
    2020-05-31 9#坝段816.00 m处理完成 844.96 39.31 2020-06-14 9#坝段832.00 m处理完成 847.13 6.83
    2020-06-04 10#坝段808.00 m处理完成 846.66 39.69 2020-06-20 9#坝段835.00 m高程处理完成 847.90 5.38
    2020-06-08 10#坝段830.00 m处理完成 846.65 14.91 2020-06-26 零星渗漏点全部处理完成 849.37 3.60
    2020-06-12 10#坝段813.70 m处理完成 846.78 14.89 2020-09-07 处理后3个月左右 871.55 6.04
    下载: 导出CSV
  • [1] 邢林生. 混凝土坝坝体渗漏危害性分析及其处理[J]. 水力发电学报,2001(3):108-116. (XING Linsheng. Analysis of leakage harmful to concrete dams and its treatment[J]. Journal of Hydroelectric Engineering, 2001(3): 108-116. (in Chinese) doi: 10.3969/j.issn.1003-1243.2001.03.013
    [2] 胡江, 马福恒, 李子阳, 等. 渗漏溶蚀混凝土坝力学性能的空间变异性研究综述[J]. 水利水电科技进展,2017,37(4):87-94. (HU Jiang, MA Fuheng, LI Ziyang, et al. Review of spatial variability of mechanical properties of concrete dams impacted by leakage dissolution[J]. Advances in Science and Technology of Water Resources, 2017, 37(4): 87-94. (in Chinese) doi: 10.3880/j.issn.1006-7647.2017.04.015
    [3] 李宏恩, 徐海峰, 李铮, 等. 地面核磁共振法与高密度电法联合探测堤坝渗漏隐患原位试验研究[J]. 地球物理学进展,2019,34(4):1627-1634. (LI Hong’en, XU Haifeng, LI Zheng, et al. In situ experimental study on resistivity-magnetic resonance sounding coupling imaging diagnosis method for an embankment dam with seepage defects[J]. Progress in Geophysics, 2019, 34(4): 1627-1634. (in Chinese) doi: 10.6038/pg2019CC0249
    [4] 赵汉金, 江晓益, 韩君良, 等. 综合物探方法在土石坝渗漏联合诊断中的试验研究[J]. 地球物理学进展,2021,36(3):1341-1348. (ZHAO Hanjin, JIANG Xiaoyi, HAN Junliang, et al. Experimental study on integrated geophysical prospecting method for joint diagnosing leakage in embankment dam[J]. Progress in Geophysics, 2021, 36(3): 1341-1348. (in Chinese) doi: 10.6038/pg2021EE0210
    [5] 宋子龙, 梁经纬, 祝志恒, 等. CCTV视觉图像处理方法在土石坝涵管病害诊断中的应用[J]. 水利水运工程学报,2019(2):99-103. (SONG Zilong, LIANG Jingwei, ZHU Zhiheng, et al. Application of CCTV visual image processing method in culvert disease diagnosis of earth-rock fill dam[J]. Hydro-Science and Engineering, 2019(2): 99-103. (in Chinese)
    [6] 戴前伟, 冯德山, 王小平. 龚嘴电站大坝渗漏入口部位探测技术[J]. 水力发电学报,2006,25(3):88-90, 83. (DAI Qianwei, FENG Deshan, WANG Xiaoping. The method to detect the leakage entrance of concrete dam at Gongzui hydropower station[J]. Journal of Hydroelectric Engineering, 2006, 25(3): 88-90, 83. (in Chinese) doi: 10.3969/j.issn.1003-1243.2006.03.019
    [7] 李国瑞, 王杰, 刘康和, 等. 混凝土大坝坝体渗漏探测技术及其应用[J]. 长江科学院院报,2020,37(9):169-174. (LI Guorui, WANG Jie, LIU Kanghe, et al. Application of leakage detection technologies for a concrete dam[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 169-174. (in Chinese) doi: 10.11988/ckyyb.20200566
    [8] 焦德秀. 混凝土坝坝体堵漏补强灌浆[J]. 水力发电,1998(6):33-35, 68. (JIAO Dexiu. Remedial grouting in the concrete dam body[J]. Water Power, 1998(6): 33-35, 68. (in Chinese) doi: 10.3969/j.issn.0559-9342.1998.06.014
    [9] 叶源新, 刘光廷, 李鹏辉, 等. 溪柄碾压混凝土薄拱坝坝体渗漏处理[J]. 水利水电科技进展,2005,25(3):27-31. (YE Yuanxin, LIU Guangting, LI Penghui, et al. Dealing with leakage of Xibing roller compacted concrete thin arch dam[J]. Advances in Science and Technology of Water Resources, 2005, 25(3): 27-31. (in Chinese) doi: 10.3880/j.issn.1006-7647.2005.03.009
    [10] 梁慧兰, 詹靑文. 江西山口岩碾压混凝土坝防渗方案设计与施工[J]. 人民长江,2015,46(21):68-70, 97. (LIANG Huilan, ZHAN Qingwen. Anti-seepage design and construction of Shankouyan RCC dam in Jiangxi Province[J]. Yangtze River, 2015, 46(21): 68-70, 97. (in Chinese)
    [11] 张群, 李丹梅. 白市水电站渗漏处理措施研究[J]. 水利水电技术,2014,45(12):11-14. (ZHANG Qun, LI Danmei. Study on seepage treatment measures for Baishi hydropower station[J]. Water Resources and Hydropower Engineering, 2014, 45(12): 11-14. (in Chinese) doi: 10.3969/j.issn.1000-0860.2014.12.003
    [12] 胡少伟, 王承强. 混凝土大坝结构修复加固新技术——分析与应用[J]. 水利学报,2007,38(增刊1):65-70. (HU Shaowei, WANG Chengqiang. Analysis and application of new reinforcing techniques for concrete dams[J]. Journal of Hydraulic Engineering, 2007, 38(Suppl1): 65-70. (in Chinese)
    [13] 来光, 张志敏, 王先忠. 某碾压混凝土坝“有限渗控”措施及效果分析[J]. 人民黄河,2014,36(8):120-122, 126. (LAI Guang, ZHANG Zhimin, WANG Xianzhong. Analysis of a roller compacted concrete dam’s “finite seepage control” measure and effect[J]. Yellow River, 2014, 36(8): 120-122, 126. (in Chinese) doi: 10.3969/j.issn.1000-1379.2014.08.036
    [14] 徐贤良, 谭秀娟. 棉花滩大坝2号坝段33号裂缝水下处理[J]. 水力发电,2005,31(1):74-76. (XU Xianliang, TAN Xiujuang. Underwater treatment of No. 33 crack on No.2 monolith of Mianhuatan dam[J]. Water Power, 2005, 31(1): 74-76. (in Chinese) doi: 10.3969/j.issn.0559-9342.2005.01.023
    [15] 周利利, 段晓惠, 汪术明, 等. 丹江口混凝土坝113 m高程水平裂缝处理[J]. 人民长江,2004,35(2):32-33, 35. (ZHOU Lili, DUAN Xiaohui, WANG Shuming, et al. On treatment of El. 113 m horizontal crack of Danjiangkou concrete dam[J]. Yangtze River, 2004, 35(2): 32-33, 35. (in Chinese) doi: 10.3969/j.issn.1001-4179.2004.02.014
    [16] 田金章, 向友国, 谭界雄. 综合检测技术在面板堆石坝渗漏检测中的应用[J]. 人民长江,2018,49(18):103-107. (TIAN Jinzhang, XIANG Youguo, TAN Jiexiong. Application of integrated leakage detection technology in detection of concrete face rockfill dam[J]. Yangtze River, 2018, 49(18): 103-107. (in Chinese)
    [17] 田金章, 查志成, 王秘学, 等. 视声一体化渗漏探测技术在面板坝渗漏检测中的应用[J]. 水电能源科学,2019,37(1):88-90. (TIAN Jinzhang, ZHA Zhicheng, WANG Mixue, et al. Application of video and sonar integrated leakage detection technology in concrete faced dam leakage detection[J]. Water Resources and Power, 2019, 37(1): 88-90. (in Chinese)
    [18] 万至达, 张学武, 盛金保, 等. 水下结构物表面缺陷的仿生双目视觉测量[J]. 水利水运工程学报,2019(2):71-78. (WAN Zhida, ZHANG Xuewu, SHENG Jinbao, et al. Bionic binocular vision measurement of surface defects of underwater structures[J]. Hydro-Science and Engineering, 2019(2): 71-78. (in Chinese)
图(5)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-02-14

目录

    /

    返回文章
    返回