Riverbed evolution characteristics in the Hechangzhou braided reach under new flow-sediment conditions and waterway regulations
-
摘要: 和畅洲汊道是长江下游典型的江心洲分汊型河道,也是长江下游历史上演变最剧烈的河段之一。三峡水库蓄水后河段来沙大幅减少,和畅洲汊道演变与航道条件随之改变,为了抑制左汊发展、改善右汊航道条件,水利、交通部门先后在左汊口门、上中段修建了三道水下潜坝。在大量实测资料的基础上,分析了新水沙条件和整治工程双重作用下和畅洲汊道及其上游六圩弯道河床演变特征。分析结果表明:2009年后六圩弯道河床持续下切,伴随着局部岸线崩退和心滩发育等不利变化;三道潜坝限流作用显著,2019年左汊实测分流比约为64%,较2002年最高76%时下降12%;右汊河床经历了缓慢淤积到由淤转冲再到普遍冲刷的阶段性变化,航道条件得到改善;但左汊潜坝下游河床产生明显的局部冲刷,且发生两次崩岸事件,应引起重视。Abstract: The Hechangzhou river reach is a typical braided reach and one of the most violently changed reaches in the lower reaches of the Yangtze River. After the impoundment of Three Gorges Dam, the sediment outflow decreased greatly, the new features of river bed evolution showed up and the navigation conditions changed accordingly in Hechangzhou braided reach. In order to restrain the scour development in the left branch and improve the navigation conditions in the right branch channel, three underwater submerged dams in the left branch were successively built. Based on a large amount of measured data, the evolution characteristics of Hechangzhou braided reach were analyzed. Results show that the riverbed in the Liuwei reach continued to cut down in 2009, accompanied by occurrences of bank line collapse and development of central bar. The control effect of three submerged dams is significant, and the measured diversion ratio of left branch in 2019 was about 64%, 12% lower than that of the highest 76% in 2002. The riverbed in the right branch changed from slow deposition to general scour, and the navigation conditions were improved. However, the left branch has experienced a significant scour in the local reach and two bank collapse events happened, which should be paid enough attention to.
-
表 1 和畅洲汊道0 m河槽断面要素统计(2019年)
Table 1 The 0 m section characteristics of Hechangzhou branch in 2019
分 段 断面要素 河宽/m 面积/m2 水深/m 宽深比 六圩弯道 1 624 30 463 20.5 1.96 和畅洲汊道 左汊 1 236 27 776 23.5 1.49 右汊 895 11 918 13.7 2.19 大港水道 1 301 31 291 24.6 1.46 表 2 六圩弯道近年来0 m河床断面要素变化
Table 2 Changes of 0 m riverbed profile of Liuwei bend
日期 河宽/m 断面面积/m2 水深/m 宽深比 1994.05 1 649 26 563 17.3 2.34 1996.05 1 540 27 195 18.9 2.07 1998.09 1 626 28 083 18.8 2.14 2000.09 1 620 27 973 19.1 2.10 2002.08 1 637 26 952 18.3 2.21 2004.10 1 635 27 526 18.5 2.19 2006.05 1 638 27 386 18.3 2.21 2008.08 1 633 27 338 18.5 2.19 2009.11 1 609 27 466 19.0 2.11 2010.03 1 622 27 626 18.9 2.13 2011.01 1 667 27 882 18.7 2.19 2011.10 1 536 28 630 20.1 1.95 2012.12 1 595 29 094 19.9 2.00 2013.07 1 610 29 471 20.0 2.00 2014.07 1 587 29 350 20.1 1.98 2015.11 1 613 30 401 20.5 1.96 2016.11 1 600 30 901 21.0 1.91 2017.11 1 611 30 371 20.6 1.95 2019.04 1 675 30 463 20.2 2.02 -
[1] 尚倩倩, 许慧, 李国斌, 等. 三峡水库蓄水前后嘉鱼水道河床演变[J]. 水利水运工程学报,2016(5):32-38. (SHANG Qianqian, XU Hui, LI Guobin, et al. Evolution analysis of Jiayu waterway before and after impoundment of Three Gorges reservoir[J]. Hydro-Science and Engineering, 2016(5): 32-38. (in Chinese) [2] 陈冬, 陈一梅, 黄召彪. 长江下游黑沙洲南水道演变特征分析[J]. 水利水运工程学报,2015(2):84-90. (CHEN Dong, CHEN Yimei, HUANG Zhaobiao. Evolution characteristics analysis of Heishazhou southern waterway of the lower Yangtze River[J]. Hydro-Science and Engineering, 2015(2): 84-90. (in Chinese) [3] 栾华龙, 刘同宦, 黄卫东. 水沙条件变化下长江下游典型江心洲汊道形态演变及趋势[J]. 长江科学院院报,2018,35(11):7-12. (LUAN Hualong, LIU Tonghuan, HUANG Weidong. Morphological evolution and trends of typical central bar channels in the lower Yangtze River under varying water and sediment discharge[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(11): 7-12. (in Chinese) doi: 10.11988/ckyyb.20180193 [4] 魏林云, 李强, 谢静红. 长江下荆江监利河段乌龟洲汊道分流分沙变化及演变特征分析[J]. 水利水电快报,2021,42(2):24-30. (WEI Linyun, LI Qiang, XIE Jinghong. Characteristic analysis of branch flow and sediment diversion of Wugui central bar in Jianli reach of Lower Jingjiang River of Yangtze River[J]. Express Water Resources & Hydropower Information, 2021, 42(2): 24-30. (in Chinese) [5] 刘杰, 程海峰, 韩露, 等. 流域水沙变化和人类活动对长江口河槽演变的影响[J]. 水利水运工程学报,2021(2):1-9. (LIU Jie, CHENG Haifeng, HAN Lu, et al. New trends of river channel evolution of the Yangtze River Estuary under the influences of inflow and sediment variations and human activities[J]. Hydro-Science and Engineering, 2021(2): 1-9. (in Chinese) [6] 桑正浩, 揭向阳, 白海瑞. 镇扬河段和畅洲汊道整治探究[J]. 中国水运,2014,14(9):302-303. (SANG Zhenghao, JIE Xiangyang, BAI Hairui. Regulation of Hechangzhou branch of Zhengyang reach[J]. China Water Transport, 2014, 14(9): 302-303. (in Chinese) [7] 窦臻, 张增发. 长江和畅洲左汊潜坝工程对汊道演变的影响[J]. 长江科学院院报,2012,29(10):21-27. (DOU Zhen, ZHANG Zengfa. Effect of submerged dike in the left branch at Hechang sandbar on the evolution of river branches[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(10): 21-27. (in Chinese) doi: 10.3969/j.issn.1001-5485.2012.10.005 [8] 杨芳丽. 和畅洲段分流比及河槽容积与航道条件关系研究[J]. 人民长江,2015,46(17):10-14. (YANG Fangli. Study on relationship of diversion ratio, channel capacity and waterway condition of Hechangzhou waterway[J]. Yangtze River, 2015, 46(17): 10-14. (in Chinese) [9] 杨芳丽, 付中敏, 朱立俊, 等. 和畅洲汊道近期演变及航道整治方案设想[J]. 泥沙研究,2012(4):63-68. (YANG Fangli, FU Zhongmin, ZHU Lijun, et al. Study of recent river evolution and waterway regulation of Hechangzhou branch channel[J]. Journal of Sediment Research, 2012(4): 63-68. (in Chinese) doi: 10.3969/j.issn.0468-155X.2012.04.011 [10] 王建中, 范红霞, 朱立俊, 等. 和畅洲汊道深水航道整治右汊水动力改善措施分析[J]. 水运工程,2014(9):11-17. (WANG Jianzhong, FAN Hongxia, ZHU Lijun, et al. Hydrodynamic improvement measures of channel regulation of the right branch of Hechangzhou waterway[J]. Port & Waterway Engineering, 2014(9): 11-17. (in Chinese) doi: 10.3969/j.issn.1002-4972.2014.09.002 [11] 窦希萍, 缴健, 储鏖, 等. 长江口水沙变化与趋势预测[J]. 海洋工程, 2020, 38(4): 2-10. DOU Xiping, JIAO Jian, CHU Ao, et al. Review of hydro-sediment change and tendency in Yangtze estuary[J]. The Ocean Engineering, 2020, 38(4): 2-10. (in Chinese)
[12] 郭文献, 李越, 王鸿翔. 近60年来长江入海水沙演变规律及影响因素分析[J]. 中国农村水利水电, 2019(7): 60-65. GUO Wenxian, LI Yue, WANG Hongxiang. Driving factors analysis of the evolution of runoff and sediment at Datong Station in resent 60 years[J]. China Rural Water and Hydropower, 2019(7): 60-65. (in Chinese)
[13] 韩玉芳, 窦希萍. 长江口综合治理历程及思考[J]. 海洋工程, 2020, 38(4): 11-18. HAN Yufang, DOU Xiping. The process and prospect of comprehensive control of Yangtze estuary[J]. The Ocean Engineering, 2020, 38(4): 11-18. (in Chinese)