径流量变化对长江口北槽最大浑浊带影响分析

万远扬, 吴华林

万远扬,吴华林. 径流量变化对长江口北槽最大浑浊带影响分析[J]. 水利水运工程学报,2021(5):1-7. DOI: 10.12170/20210422001
引用本文: 万远扬,吴华林. 径流量变化对长江口北槽最大浑浊带影响分析[J]. 水利水运工程学报,2021(5):1-7. DOI: 10.12170/20210422001
(WAN Yuanyang, WU Hualin. Study on the effect of river inflow on estuarine turbidity maximum in the North Passage of the Yangtze Estuary[J]. Hydro-Science and Engineering, 2021(5): 1-7. (in Chinese)). DOI: 10.12170/20210422001
Citation: (WAN Yuanyang, WU Hualin. Study on the effect of river inflow on estuarine turbidity maximum in the North Passage of the Yangtze Estuary[J]. Hydro-Science and Engineering, 2021(5): 1-7. (in Chinese)). DOI: 10.12170/20210422001

径流量变化对长江口北槽最大浑浊带影响分析

基金项目: 国家重点研发计划资助项目(2017YFC0405403)
详细信息
    作者简介:

    万远扬(1981—),男,湖北监利人,副研究员,主要从事河口海岸工程研究。E-mail:sway110@qq.com

  • 中图分类号: TV148

Study on the effect of river inflow on estuarine turbidity maximum in the North Passage of the Yangtze Estuary

  • 摘要: 长江口属巨型多级分汊河口,由于受中等强度潮汐及季节性变化明显的径流共同作用,其动力-地貌物理过程十分复杂。研究了长江口北槽最大浑浊带水沙动力与大通径流量的响应特征。聚焦于径流变化对河口最大浑浊带的三重作用:一是水流起悬能力增强;二是泥沙输运能力增大;三是在河口最大浑浊带这个特殊区域,由于河流效应,还会引起河口环流增强及底部向陆方向的输运能力增加。实测资料和数学模拟结果表明:对于长江口而言,径流越大,小流速的滩地由于动力增加而含沙量会越大;但主流区由于流量增加的三重作用,最大浑浊带含沙量并非单向增大,而是最大浑浊带含沙量在上游流量为30 000~40 000 m3/s时达到最大。本研究定量分析了不同径流条件下河口泥沙悬浮状态,可为长江口水域相关水土资源开发利用、生态环境保护及航道疏浚维护等工作提供参考。
    Abstract: The Yangtze Estuary is a giant multi-channel bifurcated river-tide system, which is affected by medium-intensity tides (mainly semilunar tides) and obvious seasonal variation of riverine inflow, and its hyrodynamic-morphological conditions are very complex. In this research, the response of discharge to the dynamic characteristics of water and sediment in the maximum turbidity area (North Passage) of the Yangtze Estuary is studied. The research results show that the increasing of discharge means the increasing of hydrodynamics, which first of all has two consequences: one is the enhancement of sediment resuspension capacity, the other is the increase of transport capacity; in addition, in the maximum turbidity area of the estuary, because of the river effect, there is often an increase in estuarine circulation, and the change of discharge also means that the transport capacity from the bottom to land also changes. The measured data and mathematical model jointly show that the larger the discharge is, the greater the sediment concentration of the beach with low velocity will be, however in the main flow area, due to the triple effects of the increase of discharge, the sediment concentration in the maximum turbidity area does not increase in one direction. Sediment concentration in the maximum turbidity area reaches the maximum under the discharge of 30, 000-40, 000 m3/s. This study clarifies the sediment suspension state of the estuary under different discharge conditions, which could provide a reference for the development and utilization of soil and water resources, ecological environment protection and waterway dredging maintenance in the Yangtze Estuary.
  • 图  1   长江口河势格局

    Figure  1.   Sketch map of the Yangzte Estuary

    图  2   2010—2018年大通流量变化

    Figure  2.   Daily discharge of the Datong Station from 2010 to 2018

    图  3   实测资料测站及航道单元布置

    Figure  3.   Locations of the observation stations and channel cell

    图  4   北槽最大浑浊带洪季大潮含沙量沿程垂向平均与底部年际变化

    Figure  4.   Near-bed and depth-averaged sediment concentration along the deep-water navigational channel of the Yangtze Estuary during spring tide of flood seasons

    图  5   模型范围及计算网格

    Figure  5.   Model domain and mesh distribution

    图  6   不同流量下南北槽14 d垂线平均含沙量场的分布及余流

    Figure  6.   Distribution of the residual currents and 14 days-avaeraged sediment concentration in the North and South Passages under different discharges from 20 000 to 80 000 m3/s

    图  7   不同流量下横沙、北槽中和牛皮礁站潮差

    Figure  7.   Tidal limits of the Hengsha, Beicaozhong and Niupijiao station under different discharges from 20 000 to 80 000 m3/s

    图  8   不同流量下北槽沿程平均含沙量分布

    Figure  8.   Along-channel depth-averaged sediment concentration under different discharges from 20 000 to 80 000 m3/s

    表  1   北槽固定垂线测验期间边界条件及泥沙分层系数(洪季大潮期)

    Table  1   Boundary conditions of the measurement and the sediment stratification coefficient (spring tide of the flood season)

    年 份流量/
    (m3·s−1
    泥沙分层
    系数
    年 份流量/
    (m3·s−1
    泥沙分层
    系数
    2010 60 000 2.39 2015 50 000 2.83
    2011 30 000 3.17 2016 70 000 2.33
    2012 47 000 2.88 2017 63 000 2.08
    2013 39 600 2.53 2018 40 100 3.05
    2014 46 200 3.01
    下载: 导出CSV
  • [1]

    WAN Y Y. Multiscale physical processes of fine sediment in an estuary[D]. Delft: Delft University of Technology, 2015.

    [2]

    DRONKERS J. Tide-induced residual transport of fine sediment[M]∥VAN DE KREEKE J. Physics of Shallow Estuaries and Bays. New York: Springer-Verlag, 1986: 228-244.

    [3]

    VALLE-LEVINSON A. Contemporary issues in estuarine physics[M]. Cambridge: Cambridge University Press, 2010.

    [4]

    GUO L, VAN DER WEGEN M, ROELVINK J A, et al. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(11): 2315-2334. doi: 10.1002/2014JF003110

    [5]

    JAY D A, MUSIAK J D. Internal tidal asymmetry in channel flows: origins and consequences[M]∥PATTIARATCHI C. Mixing in Estuaries and Coastal Seas. Washington DC: AGU, 1996: 211-249.

    [6]

    WANG X H. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary with a muddy bed[J]. Journal of Physical Oceanography, 2002, 32(11): 3113-3131. doi: 10.1175/1520-0485(2002)032<3113:TISRAT>2.0.CO;2

    [7] 沈焕庭, 潘定安. 长江河口最大浑浊带[M]. 北京: 海洋出版社, 2001.

    SHEN Huangting, PAN Dingan. Turbidity maximum in the Changjiang estuary[M]. Beijing: China Ocean Press, 2001. (in Chinese)

    [8] 杨正东, 朱建荣, 王彪, 等. 长江河口潮位站潮汐特征分析[J]. 华东师范大学学报(自然科学版),2012(3):111-119. (YANG Zhengdong, ZHU Jianrong, WANG Biao, et al. Analysis of tidal characteristics of the tide gauges in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Science), 2012(3): 111-119. (in Chinese)
    [9] 李佳. 长江河口潮区界和潮流界及其对重大工程的响应[D]. 上海: 华东师范大学, 2004.

    LI Jia. Tidal limit and tidal current limit & response to major engineering in Yangtze Estuary[D]. Shanghai: East China Normal University, 2004. (in Chinese)

    [10] 路川藤, 罗小峰, 陈志昌. 长江口潮波传播影响因素探讨[J]. 海岸工程,2011,30(1):29-35. (LU Chuanteng, LUO Xiaofeng, CHEN Zhichang. Discussion on factors effecting tidal wave propagation in Yangtze Estuary[J]. Coastal Engineering, 2011, 30(1): 29-35. (in Chinese) doi: 10.3969/j.issn.1002-3682.2011.01.005
    [11] 陈吉余, 沈焕庭. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988.

    CHEN Jiyu, SHEN Huangting. Estuarine hydro- and morph-dynamics of the Yangtze Estuary[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1988. (in Chinese)

    [12]

    WINTERWERP J C, VROOM J, WANG Z B, et al. SPM response to tide and river flow in the hyper-turbid Ems River[J]. Ocean Dynamics, 2017, 67(5): 559-583. doi: 10.1007/s10236-017-1043-6

    [13]

    WOLANSKI E, CHAPPELL J, RIDD P, et al. Fluidization of mud in estuaries[J]. Journal of Geophysical Research: Oceans, 1988, 93(C3): 2351-2361. doi: 10.1029/JC093iC03p02351

    [14] 戚定满. 长江口航道核心计算平台开发研究及成果应用[R]. 上海: 上海河口海岸科学研究中心, 2007.

    QI Dingman. Study and application of the numerical platform of navigational channel of the Yangtze Estuary[R]. Shanghai: Shanghai Estuarine and Coastal Scientific Research Center, 2007. (in Chinese)

    [15] 万远扬, 孔令双, 戚定满, 等. 长江口横沙通道近期演变及水动力特性分析[J]. 水道港口,2010,31(5):373-378. (WAN Yuanyang, KONG Lingshuang, QI Dingman, et al. Study on characteristics of hydrodynamic and morphological evolution at Hengsha Watercourse of the Yangtze Estuary, China[J]. Journal of Waterway and Harbor, 2010, 31(5): 373-378. (in Chinese) doi: 10.3969/j.issn.1005-8443.2010.05.019
    [16]

    WAN Y Y, ROELVINK D, LI W H, et al. Observation and modeling of the storm-induced fluid mud dynamics in a muddy-estuarine navigational channel[J]. Geomorphology, 2014, 217: 23-36. doi: 10.1016/j.geomorph.2014.03.050

    [17]

    WAN Y Y, WU H L, ROELVINK D, et al. Experimental study on fall velocity of fine sediment in the Yangtze Estuary, China[J]. Ocean Engineering, 2015, 103: 180-187. doi: 10.1016/j.oceaneng.2015.04.076

    [18] 万远扬. 水沙条件变化对长江口深水航道影响初步分析[R]. 上海: 上海河口海岸科学研究中心, 2019.

    WAN Yuanyang. Preliminarily study on the effect of variations of sediment and water conditions on the Deepwater Navigational Channel of the Yangtze Estuary[R]. Shanghai: Shanghai Estuarine and Coastal Scientific Research Center, 2019. (in Chinese)

图(8)  /  表(1)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  42
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2021-10-24

目录

    /

    返回文章
    返回