Study on grading degradation of coarse coal slurry pipeline transportation and its influence
-
摘要: 针对粗颗粒煤浆输送中颗粒级配降级预测研究不足的问题,采用试验研究和理论分析法,给出了输送30、40、50和60 min时煤浆中各颗粒粒级的质量百分数、黏度和水力坡度值,提出用磨矿理论研究粗颗粒煤浆管道输煤过程的构想, 据此给出了破碎率函数和磨矿平衡方程的求解方法。研究表明,煤浆输送30和50 min时颗粒级配的预测值与实测值最大偏差不大于12.53%。随着粗煤浆体输送时间的延长,煤浆相对黏度逐渐增大,主要原因是由于2.0 mm以上粗颗粒的颗粒细化,增加了0.074 mm以下的细颗粒含量。颗粒级配降级导致水力坡度降低主要是由于粗颗粒细化导致沉降速度降低及与管道底部接触的粗颗粒有所减少的原因。Abstract: In view of the lack of research on the prediction of particle gradation degradation in the transportation of coarse particle coal slurry, by using the experimental research method and theoretical analysis method, the mass percentage, viscosity and hydraulic gradient of each particle size in coal slurry at 30, 40, 50 and 60 min are given out. The idea of using grinding theory to study the coal conveying process of coarse coal slurry pipeline is put forward. On this basis, the solution methods of breakage rate function and grinding balance equation are given. The results of data comparison and analysis show that the maximum deviation between the predicted value and the measured value of particle gradation is no more than 12.53% when the coal slurry is transported for 30 and 50 min. With the extension of conveying time of coarse coal slurry, the relative viscosity of coal slurry gradually increases, mainly due to the refinement of coarse particles above 2.0 mm and the increase of particle content below 0.074 mm. The reduction of hydraulic gradient caused by particle grading degradation is mainly due to the reduction of settlement velocity caused by coarse particle refinement and the reduction of the probability of particle contact with the bottom of the pipeline.
-
-
表 1 初始颗粒粒度分布
Table 1 Initial particle size distribution
粒度区间/mm 质量百分数/% 10.000~29.400 10.10 5.000~10.000 13.50 2.000~5.000 20.00 0.500~2.000 21.40 0.074~0.500 15.00 <0.074 20.00 表 2 煤浆输送40和60 min时颗粒级配构成
Table 2 Composition of particle gradation when conveying for 40 min and 60 min
粒级区间/mm 40 min时质量百分数/% 60 min时质量百分数/% 10.000~29.400 7.60 5.22 5.000~10.000 13.28 13.15 2.000~5.000 18.54 18.23 0.500~2.000 23.47 23.67 0.074~0.500 17.02 17.73 <0.074 20.09 22.00 表 3 不同输送时刻破碎率函数计算值
Table 3 Calculated values of crushing rate function at different conveying times
输送时间/min S 1/min−1 S 2/min−1 S3/min−1 S 4/min−1 S 5/min−1 40 0.005 818 0.002 061 0.001 720 0.000 425 0.000 033 60 0.008 400 0.004 061 0.003 320 0.001 230 0.000 015 平均 0.007 109 0.003 061 0.002 520 0.000 825 0.000 028 表 4 不同时刻颗粒级配预测值和实测值对比
Table 4 Comparison of predicted and measured values of particle gradation at different times
粒级区间/mm 不同时刻各粒级分布/% 相对误差/ % t=0 t=30 min (计算) t=30 min
(实测)t=50 min
(计算)t=50 min
(实测)t=30 min t=50 min 10.000~29.400 10.10 8.17 9.34 7.08 6.44 −12.53 9.94 5.000~10.000 13.50 13.37 13.43 13.17 13.21 −0.44 −0.30 2.000~5.000 20.00 18.90 18.79 18.19 18.34 0.59 −0.82 0.500~2,000 21.40 22.99 22.41 23.93 23.52 2.59 1.74 0.074~0.500 15.00 16.52 16.01 17.51 17.30 3.19 1.21 <0.074 20.00 20.07 20.02 20.11 21.21 0.25 −5.19 表 5 煤浆级配降级对黏度影响
Table 5 Effect of coal slurry gradation degradation on viscosity
输送
时间/min粒径小于0.074 mm
的质量百分数/%实测相对黏度 计算相对黏度 相对
误差/%0 20.00 1.421 1.309 −7.88 30 20.02 1.213 1.315 8.41 40 20.09 1.345 1.322 −1.71 50 21.21 1.273 1.350 6.05 60 22.00 1.398 1.373 −1.82 -
[1] 于新胜, 陈益滨. 管道输煤技术应用现状及展望[J]. 煤炭工程,2020,52(5):1-4. (YU Xinsheng, CHEN Yibin. Application status and prospect of pipeline coal transport[J]. Coal Engineering, 2020, 52(5): 1-4. (in Chinese) YU Xinsheng, CHEN Yibin. Application status and prospect of pipeline coal transport[J]. Coal Engineering, 2020, 52(5): 1-4. (in Chinese))
[2] 马妍, 陈家琪, 门著铭, 等. 管道输煤参数优化研究[J]. 煤炭工程,2017,49(5):107-111. (MA Yan, CHEN Jiaqi, MEN Zhuming, et al. Optimization of coal pipeline transportation parameters[J]. Coal Engineering, 2017, 49(5): 107-111. (in Chinese) doi: 10.11799/ce201705032 MA Yan, CHEN Jiaqi, MEN Zhuming, et al. Optimization of coal pipeline transportation parameters[J]. Coal Engineering, 2017, 49(5): 107-111. (in Chinese)) doi: 10.11799/ce201705032
[3] 汪家琼, 叶群, 闫科委, 等. 颗粒直径对渣浆泵冲蚀磨损性能的影响[J]. 排灌机械工程学报,2014,32(10):840-844. (WANG Jiaqiong, YE Qun, YAN Kewei, et al. Effects of particle diameter on erosion wear performance of slurry pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 840-844. (in Chinese) doi: 10.3969/j.issn.1674-8530.13.0258 WANG Jiaqiong, YE Qun, YAN Kewei, et al. Effects of particle diameter on erosion wear performance of slurry pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 840-844. (in Chinese)) doi: 10.3969/j.issn.1674-8530.13.0258
[4] 吴波, 严宏志, 徐海良, 等. 渣浆泵内固相颗粒冲蚀特性的数值模拟[J]. 中南大学学报(自然科学版),2012(1):124-129. (WU Bo, YAN Hongzhi, XU Hailiang, et al. Numerical simulation about erosion characteristics of solid particle in slurry pump[J]. Journal of Central South University (Science and Technology), 2012(1): 124-129. (in Chinese) WU Bo, YAN Hongzhi, XU Hailiang, et al. Numerical simulation about erosion characteristics of solid particle in slurry pump[J]. Journal of Central South University (Science and Technology), 2012(1): 124-129. (in Chinese))
[5] HUI W. Numeration simulation of the solid/liquid two-phase flow field in a slurry pump[D]. Xi’an: Xi’an University of Architecture and Technology, 2009.
[6] SHOOK C A, HAAS D B, HUSBAND W H W, et al. Breakage rates of lignite particles during hydraulic transport[J]. The Canadian Journal of Chemical Engineering, 1978, 56(4): 448-454. doi: 10.1002/cjce.5450560403
[7] MOSA E S, SALEH A M, TAHA A T, et al. A study on the effect of slurry temperature, slurry pH and particle degradation on rheology and pressure drop of coal water slurries[J]. Journal of Engineering Sciences, 2007, 35(5): 1297-1311.
[8] 赵利安. 煤浆管道输送颗粒级配降级研究[J]. 水利水运工程学报,2016(6):109-115. (ZHAO Li’an. Test analysis of particle size distribution degradation for coal slurry conveying by pipelines[J]. Hydro-Science and Engineering, 2016(6): 109-115. (in Chinese) ZHAO Lian. Test analysis of particle size distribution degradation for coal slurry conveying by pipelines[J]. Hydro-Science and Engineering, 2016(6): 109-115. (in Chinese))
[9] ZHAO L A, WANG T L, CAI R H. Prediction of coal slurry pipeline transportation grading reduction and its influence on pipe transportation parameters[J]. Brazilian Journal of Chemical Engineering, 2019, 36(2): 845-853. doi: 10.1590/0104-6632.20190362s20180209
[10] 黄礼龙, 张国旺, 宋晓岚, 等. 基于MATLAB/Simulink的立磨机批次磨矿的建模与仿真研究[J]. 矿冶工程,2016,36(3):26-30, 35. (HUANG Lilong, ZHANG Guowang, SONG Xiaolan, et al. Modelling and simulation of batch grinding with vertical stirred mill based on MATLAB/simulink[J]. Mining and Metallurgical Engineering, 2016, 36(3): 26-30, 35. (in Chinese) doi: 10.3969/j.issn.0253-6099.2016.03.007 HUANG Lilong, ZHANG Guowang, SONG Xiaolan, et al. Modelling and simulation of batch grinding with vertical stirred mill based on MATLAB/simulink[J]. Mining and Metallurgical Engineering, 2016, 36(3): 26-30, 35. (in Chinese)) doi: 10.3969/j.issn.0253-6099.2016.03.007
[11] 何逵, 库建刚, 徐国印, 等. 钒钛磁铁矿磨矿动力学试验研究[J]. 矿冶工程,2016,36(6):35-38. (HE Kui, KU Jiangang, XU Guoyin, et al. Grinding kinetics of vanadic titanomagnetite from Panzhihua[J]. Mining and Metallurgical Engineering, 2016, 36(6): 35-38. (in Chinese) doi: 10.3969/j.issn.0253-6099.2016.06.009 HE Kui, KU Jiangang, XU Guoyin, et al. Grinding kinetics of vanadic titanomagnetite from Panzhihua[J]. Mining and Metallurgical Engineering, 2016, 36(6): 35-38. (in Chinese)) doi: 10.3969/j.issn.0253-6099.2016.06.009
[12] 杨金林, 周文涛, 蒋林伶, 等. 磨矿动力学研究概述[J]. 矿产综合利用,2017(4):4-10. (YANG Jinlin, ZHOU Wentao, JIANG Linling, et al. Review of grinding kinetics research[J]. Multipurpose Utilization of Mineral Resources, 2017(4): 4-10. (in Chinese) doi: 10.3969/j.issn.1000-6532.2017.04.002 YANG Jinlin, ZHOU Wentao, JIANG Linling, et al. Review of grinding kinetics research[J]. Multipurpose Utilization of Mineral Resources, 2017(4): 4-10. (in Chinese)) doi: 10.3969/j.issn.1000-6532.2017.04.002
[13] 王晨晨, 黄朝德, 付金涛, 等. 青海某铅锌矿磨矿动力学试验研究[J]. 矿产综合利用,2020(1):59-61. (WANG Chenchen, HUANG Chaode, FU Jintao, et al. Experimental research ongrinding kinetics for a lead-zinc ore in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 59-61. (in Chinese) doi: 10.3969/j.issn.1000-6532.2020.01.012 WANG Chenchen, HUANG Chaode, FU Jintao, et al. Experimental research ongrinding kinetics for a lead-zinc ore in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 59-61. (in Chinese)) doi: 10.3969/j.issn.1000-6532.2020.01.012
[14] PARAPARI P S, PARIAN M, ROSENKRANZ J. Breakage process of mineral processing comminution machines—An approach to liberation[J]. Advanced Powder Technology, 2020, 31(9): 3669-3685. doi: 10.1016/j.apt.2020.08.005
[15] KWON J, CHO H. Investigation of error distribution in the back-calculation of breakage function model parameters via nonlinear programming[J]. Minerals, 2021, 11(4): 425. doi: 10.3390/min11040425
[16] BERTHIAUX H, VARINOT C, DODDS J. Approximate calculation of breakage parameters from batch grinding tests[J]. Chemical Engineering Science, 1996, 51(19): 4509-4516. doi: 10.1016/0009-2509(96)00275-8
[17] ARUNANSHU C. Investigation on slurry transportation performance of coal-water mixture at high concentrations[D]. India: Thapar University, 2013.