促淤板水流特性数值分析

黄伊偲, 徐立君, 程永舟, 唐彬欣

黄伊偲,徐立君,程永舟,等. 促淤板水流特性数值分析[J]. 水利水运工程学报,2023(2):24-33. DOI: 10.12170/20211224001
引用本文: 黄伊偲,徐立君,程永舟,等. 促淤板水流特性数值分析[J]. 水利水运工程学报,2023(2):24-33. DOI: 10.12170/20211224001
(HUANG Yicai, XU Lijun, CHENG Yongzhou, et al. Numerical analysis of flow characteristics of perforated deposit-promoting plate[J]. Hydro-Science and Engineering, 2023(2): 24-33. (in Chinese)). DOI: 10.12170/20211224001
Citation: (HUANG Yicai, XU Lijun, CHENG Yongzhou, et al. Numerical analysis of flow characteristics of perforated deposit-promoting plate[J]. Hydro-Science and Engineering, 2023(2): 24-33. (in Chinese)). DOI: 10.12170/20211224001

促淤板水流特性数值分析

基金项目: 国家自然科学基金资助项目(52071031);湖南省水利科技项目(XSKJ2019081-48);湖南省研究生科研创新项目(CX20200859)
详细信息
    作者简介:

    黄伊偲(1998—),女,湖南浏阳人,硕士研究生,主要从事河流动力学研究。E-mail:1057123039@qq.com

    通讯作者:

    徐立君(E-mail:747071120@qq.com

  • 中图分类号: TV85

Numerical analysis of flow characteristics of perforated deposit-promoting plate

  • 摘要: 在航道整治和河道治理工程中,常使用促淤结构来促进泥沙淤积、保护洲滩。结合导板结构与透水结构的特点,提出一种新型促淤护滩结构——开孔促淤板。为进一步分析开孔促淤板的促淤拦沙效果,基于RNG k-$ {\varepsilon } $紊流模型建立了三维开孔促淤板水流数值模型,并通过物理模型试验对数值模型进行验证。计算分析了流速、开孔率、相对单孔面积等因素对流速、减速率的影响,拟合得到最优开孔率与最佳单孔面积的预测经验公式。结果表明:相对单孔面积对板前流态影响较小,对板后的流速、流态及减速区的形成有影响;开孔率越大,板后减速效果越差,开孔率为30%时,近底区域减速效果最好;来流流速会影响开孔促淤板的减速效果,来流流速为0.2 m/s时减速效果最好。
    Abstract: In the waterway regulation and river regulation projects, in order to promote the deposition along the beach and protect the beach, basde on the characteristics of guide plate structure and permeable structure, a new perforated deposit-promoting plate for beach protection is proposed in this study. In order to further analyze the siltation promoting and sediment retaining effect of the plate, its flow characteristics are deeply studied. Based on the RNG k- ε turbulence model, a three-dimensional numerical model of perforated deposit-promoting plate is established, and the numerical model is verified by the physical model test data of the plate under the action of water flow. The effects of different flow velocities, percentages of opening area and relative single hole areas on the flow velocity and deceleration rate around the perforated deposit-promoting plate are calculated and analyzed, and the empirical formulas for prediction of the optimal percentage of opening area and the optimal single hole area are fitted. The results show that the relative single hole area has little effect on the flow pattern in front of the plate, but has an effect on the velocity flow pattern behind the plate and the formation of deceleration zone. The larger the percentage of the opening area, the worse the deceleration effect behind the plate. When the percentage of the opening area is 30%, the deceleration effect near the bottom is the strongest. The inflow velocity will affect the deceleration effect of the perforated deposit-promoting plate, and the deceleration effect is the best when the inflow velocity is 0.2 m/s.
  • 图  1   开孔促淤板结构示意

    Figure  1.   Schematic diagram of the structure of the perforated deposit-promoting plate

    图  2   数值水槽三维模型简图

    Figure  2.   Three-dimensional sketch of a numerical sink model

    图  3   数值水槽网格划分示意

    Figure  3.   Schematic diagram of numerical sink meshing

    图  4   物理模型试验

    Figure  4.   Physical model testing

    图  5   模型各断面垂线流速及水位验证

    Figure  5.   Verification and comparison of vertical velocity and water level at each section of the model

    图  6   不同孔数下30%开孔率下各断面垂线流速分布

    Figure  6.   Distribution of vertical flow velocity in each section under 30% opening rate with different number of holes

    图  7   开孔率为30%时板后5H内流线

    Figure  7.   Flow line of five times water depth away from the deposit-promoting plate with 30% opening

    图  8   不同开孔率下各断面垂线流速分布

    Figure  8.   Distribution of vertical flow velocity in each section with different opening rates

    图  9   不同开孔率下板前后流速减速率分布

    Figure  9.   Distribution of decelerations in front of and behind plates under different opening rates

    图  10   流速对开孔板减速率的影响

    Figure  10.   Effect of flow rate on deceleration rate of perforated plate

    表  1   试验工况

    Table  1   Test working conditions

    模拟工况开孔率/%相对单孔面积/%纵向孔数流速/(m·s−1水深/m
    1561.1250.150.30
    21.404
    31.873
    42.802
    5460.7760.150.30
    60.965
    71.284
    81.923
    9400.4170.150.30
    100.486
    110.575
    120.714
    13300.2380.150.30
    140.277
    150.316
    160.385
    17300.3850.100.30
    180.20
    190.25
    200.30
    下载: 导出CSV
  • [1] 葛瑶, 陈长英. 潜没式治河建筑物水流特性研究综述[J]. 长江科学院院报,2015,32(5):66-71 doi: 10.3969/j.issn.1001-5485.2015.05.013

    GE Yao, CHEN Changying. Research advances in flow characteristics near submerged river regulation structures[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 66-71. (in Chinese) doi: 10.3969/j.issn.1001-5485.2015.05.013

    [2] 周银军, 刘焕芳, 何春光, 等. 透水丁坝局部冲淤规律试验研究[J]. 水利水运工程学报,2008(1):57-60 doi: 10.3969/j.issn.1009-640X.2008.01.010

    ZHOU Yinjun, LIU Huanfang, HE Chunguang, et al. Experimental study on local scour and silting around permeable spur[J]. Hydro-Science and Engineering, 2008(1): 57-60. (in Chinese) doi: 10.3969/j.issn.1009-640X.2008.01.010

    [3] 许百强, 喻涛, 王平义, 等. 长江上游透水丁坝水面线分布试验研究[J]. 水利水运工程学报,2019(5):62-68 doi: 10.12170/201905008

    XU Baiqiang, YU Tao, WANG Pingyi, et al. Experimental studies on flow profile of permeable spur dikes in upper reaches of Yangtze River[J]. Hydro-Science and Engineering, 2019(5): 62-68. (in Chinese) doi: 10.12170/201905008

    [4]

    GU Z P, AKAHORI R, IKEDA S. Study on the transport of suspended sediment in an open channel flow with permeable spur dikes[J]. International Journal of Sediment Research, 2011, 26(1): 96-111. doi: 10.1016/S1001-6279(11)60079-6

    [5] 周银军, 刘焕芳, 何春光, 等. 桩柱透水丁坝水流特性试验研究[J]. 泥沙研究,2009(5):58-62 doi: 10.3321/j.issn:0468-155X.2009.05.010

    ZHOU Yinjun, LIU Huanfang, HE Chunguang, et al. Experimental study on flow character around the pillared permeable spur dike[J]. Journal of Sediment Research, 2009(5): 58-62. (in Chinese) doi: 10.3321/j.issn:0468-155X.2009.05.010

    [6]

    ZHOU Y J, QIAN S, SUN N N. Application of permeable spur dike in mountain river training[J]. Applied Mechanics and Materials, 2014, 641/642: 236-240. doi: 10.4028/www.scientific.net/AMM.641-642.236

    [7]

    HUANG C T. Experimental study on the flow mitigation characteristic of sub-water permeable spur dike[J]. Advanced Materials Research, 2014, 926/927/928/929/930: 565-570.

    [8] 樊新建, 贺伟军, 赵文举, 等. 水力插板透水丁坝水流结构随透水率的变化规律研究[J]. 水利水电技术,2018,49(9):120-126 doi: 10.13928/j.cnki.wrahe.2018.09.016

    FAN Xinjian, HE Weijun, ZHAO Wenju, et al. Study on variation law of flow structure of hydraulic flashboard permeable spur dike along with water permeability[J]. Water Resources and Hydropower Engineering, 2018, 49(9): 120-126. (in Chinese) doi: 10.13928/j.cnki.wrahe.2018.09.016

    [9] 贠宝革. 透水丁坝纵向流速分布试验研究[J]. 广东水利水电,2021(1):55-62

    YUN Baoge. Experimental study on longitudinal velocity distribution of pervious groins[J]. Guangdong Water Resources and Hydropower, 2021(1): 55-62. (in Chinese)

    [10] 许恩乐, 周驰, 李韶璞, 等. 平面型防风网阻力系数的研究[J]. 化学工程,2017,45(7):49-55 doi: 10.3969/j.issn.1005-9954.2017.07.010

    XU Enle, ZHOU Chi, LI Shaopu, et al. Research on drag coefficient of planar porous fence[J]. Chemical Engineering (China), 2017, 45(7): 49-55. (in Chinese) doi: 10.3969/j.issn.1005-9954.2017.07.010

    [11] 吕祚睿, 刘勇, 李华军. 基于非线性压力损失边界条件的半圆型开孔潜堤水动力特性解析研究[J]. 中国海洋大学学报(自然科学版),2020,50(10):99-106 doi: 10.16441/j.cnki.hdxb.20180121

    LÜ Zuorui, LIU Yong, LI Huajun. Analytical studies on hydrodynamic characteristics of submerged perforated semi-circular breakwater based on non-linear pressure loss boundary condition[J]. Periodical of Ocean University of China, 2020, 50(10): 99-106. (in Chinese) doi: 10.16441/j.cnki.hdxb.20180121

    [12] 申帅辉, 李玉建, 李鹤, 等. 插板透水丁坝透水孔优化方案数值模拟[J]. 水利水电技术,2020,51(4):159-165 doi: 10.13928/j.cnki.wrahe.2020.04.019

    SHEN Shuaihui, LI Yujian, LI He, et al. Numerical simulation on optimization scheme of permeable hole of permeable sheet piling spur dike[J]. Water Resources and Hydropower Engineering, 2020, 51(4): 159-165. (in Chinese) doi: 10.13928/j.cnki.wrahe.2020.04.019

    [13] 张为, 李义天, 王秀英, 等. 透水结构促淤试验研究[J]. 四川大学学报(工程科学版),2005,37(6):31-37 doi: 10.15961/j.jsuese.2005.06.007

    ZHANG Wei, LI Yitian, WANG Xiuying, et al. Experimental study on deposition promotion of permeable structure[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 31-37. (in Chinese) doi: 10.15961/j.jsuese.2005.06.007

    [14] 许栋, 申振东, 高喜峰, 等. 防风网透流风空气动力学特性大涡数值模拟研究[J]. 计算力学学报,2015,32(4):530-536 doi: 10.7511/jslx201504014

    XU Dong, SHEN Zhendong, GAO Xifeng, et al. Investigation on the aerodynamic characteristics of the seepage wind through windbreak using large eddy simulation[J]. Chinese Journal of Computational Mechanics, 2015, 32(4): 530-536. (in Chinese) doi: 10.7511/jslx201504014

    [15] 姚仕明, 卢金友, 罗恒凯. 长江中下游护岸工程新材料新技术试验研究[J]. 人民长江,2006,37(4):79-80 doi: 10.3969/j.issn.1001-4179.2006.04.031

    YAO Shiming, LU Jinyou, LUO Hengkai. Experimental study on new material, new technology for middle and lower stream bank protection works[J]. Yangtze River, 2006, 37(4): 79-80. (in Chinese) doi: 10.3969/j.issn.1001-4179.2006.04.031

    [16]

    DU S T, LIANG B C, LEE D Y. Numerical investigation of local scour with inclined piles[J]. Journal of Coastal Research, 2019, 91(Suppl1): 161. doi: 10.2112/SI91-033.1

图(10)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-04-14

目录

    /

    返回文章
    返回