Denoising method of acoustic point cloud on the inner surface of water conveyance tunnel based on acoustic echo characteristics
-
摘要: 针对基于声波反射原理的隧洞内表面损伤探测过程易受水体环境噪声、多径噪声及检测设备自身噪声干扰问题,提出一种基于声回波特性的引水隧洞内表面声点云去噪方法。该方法利用声回波固有宽度特性形成的多回波数据点及声波叠加特性形成的数据点高强度值,并结合点云空间位置信息实现团状立体隧洞内表面声点云的噪声滤波;构建系列试验以验证不同敏感参数对所提方法去噪效果的影响,并与其他经典点云滤波算法结果进行对比分析。结果表明,所提方法在隧洞内表面声点云模型的平滑、去噪及重建精度上均优于传统激光点云滤波算法。该方法可为引水隧洞内表面损伤的检测及重大水资源配置工程灾变预防提供支撑。Abstract: For the problem that the detection process of inner surface damage of tunnel based on acoustic reflection mechanism is susceptible to the interference of water environment noise, multipath noise and the noise of detection equipment, a denoising method of acoustic point cloud on the inner surface of water conveyance tunnel based on acoustic echo characteristics is proposed in this paper. The method utilizes the multi-echo data points formed by the inherent width characteristics of acoustic waves and the high-intensity values of data points formed by the superposition characteristics of acoustic waves, and combines the spatial position information of the point cloud to realize the noise filtering of the acoustic point cloud on the inner surface of the tunnel. Moreover, a series of experiments are conducted to verify the influence of different sensitive parameters on the denoising effect of the proposed method, and the results are compared with other classical point cloud filtering algorithms. The experimental results show that the proposed method is superior to the traditional laser point cloud filtering algorithm in the smoothing, denoising and reconstruction accuracy of the acoustic point cloud model on the inner surface of the tunnel. This method has practical research value for the detection of inner surface damage of water conveyance tunnel and the prevention of disasters in major water resources allocation projects.
-
-
表 1 不同滤波算法误差评价指标值
Table 1 Error metrics of different filtering algorithms
方法 Dm/cm RRMS/cm $\sigma $/cm Rh/% 半径滤波方法 5.83 6.92 3.74 5.32 高斯统计滤波方法 5.68 6.59 3.33 5.08 本文方法 4.73 5.09 1.89 2.81 -
[1] 来记桃. 大直径长引水隧洞水下全覆盖无人检测技术研究[J]. 人民长江,2020,51(5):228-232 LAI Jitao. Research and application of underwater full coverage unmanned detection technology for large diameter and long diversion tunnel[J]. Yangtze River, 2020, 51(5): 228-232. (in Chinese)
[2] 朱新民, 王铁海, 刘亦兵, 等. 长距离输水隧洞缺陷检测新技术[J]. 水利水电技术,2010,41(12):78-81 ZHU Xinmin, WANG Tiehai, LIU Yibing, et al. A new defect detection technology for long-distance water conveyance tunnel[J]. Water Resources and Hydropower Engineering, 2010, 41(12): 78-81. (in Chinese)
[3] 王长生, 马福恒, 何心望, 等. 基于物联网的燕山水库大坝智能巡检系统[J]. 水利水运工程学报,2014(2):48-53 doi: 10.3969/j.issn.1009-640X.2014.02.008 WANG Changsheng, MA Fuheng, HE Xinwang, et al. Intelligent inspection system for Yanshan reservoir dam based on the Internet of Things technology[J]. Hydro-Science and Engineering, 2014(2): 48-53. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.02.008
[4] 来记桃, 李乾德. 长大引水隧洞长期运行安全检测技术体系研究[J]. 水利水电技术(中英文),2021,52(6):162-170 LAI Jitao, LI Qiande. Study on long-term operation safety detection technical system of large and long diversion tunnel[J]. Water Resources and Hydropower Engineering, 2021, 52(6): 162-170. (in Chinese)
[5] HAYES M P, GOUGH P T. Synthetic aperture sonar: a review of current status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207-224. doi: 10.1109/JOE.2009.2020853
[6] 刘纪元. 合成孔径声呐技术研究进展[J]. 中国科学院院刊,2019,34(3):283-288 LIU Jiyuan. Advancement of synthetic aperture sonar technique[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 283-288. (in Chinese)
[7] 李海森, 周天, 徐超. 多波束测深声纳技术研究新进展[J]. 声学技术,2013,32(2):73-80 LI Haisen, ZHOU Tian, XU Chao. New developments on the technology of multi-beam bathymetric sonar[J]. Technical Acoustics, 2013, 32(2): 73-80. (in Chinese)
[8] 何勇光. 海洋侧扫声呐探测技术的现状及发展[J]. 工程建设与设计,2020(4):275-276 HE Yongguang. Present situation and development of ocean side scan sonar detection technology[J]. Construction & Design for Engineering, 2020(4): 275-276. (in Chinese)
[9] 冯东恒, 石波, 卢秀山, 等. 一种顾及水下地形特点的多波束点云去噪算法[J]. 测绘科学技术学报,2017,34(4):364-369 FENG Dongheng, SHI Bo, LU Xiushan, et al. A multi-beam point cloud denoising algorithm considering underwater topographic features[J]. Journal of Geomatics Science and Technology, 2017, 34(4): 364-369. (in Chinese)
[10] 解全波, 田茂义, 冯成凯, 等. 结合多波束点云强度和高程信息滤波算法研究[J]. 海洋测绘,2021,41(1):65-69 doi: 10.3969/j.issn.1671-3044.2021.01.014 XIE Quanbo, TIAN Maoyi, FENG Chengkai, et al. Study on filtering algorithm combining multibeam point cloud intensity and elevation information[J]. Hydrographic Surveying and Charting, 2021, 41(1): 65-69. (in Chinese) doi: 10.3969/j.issn.1671-3044.2021.01.014
[11] 崔晓冬, 沈蔚, 帅晨甫, 等. 多波束点云滤波算法初步研究及适用性分析[J]. 海洋测绘,2021,41(5):12-16 doi: 10.3969/j.issn.1671-3044.2021.05.003 CUI Xiaodong, SHEN Wei, SHUAI Chenfu, et al. Preliminary research and application analysis of multi-beam point cloud filtering algorithm[J]. Hydrographic Surveying and Charting, 2021, 41(5): 12-16. (in Chinese) doi: 10.3969/j.issn.1671-3044.2021.05.003
[12] 魏博文, 钟紫蒙. 基于改进小波阈值-EMD算法的高拱坝结构振动响应分析[J]. 水利水运工程学报,2019(4):83-91 doi: 10.12170/201904012 WEI Bowen, ZHONG Zimeng. Flow-induced vibration response analysis of high arch dam discharge structure based on improved wavelet threshold-EMD algorithm[J]. Hydro-Science and Engineering, 2019(4): 83-91. (in Chinese) doi: 10.12170/201904012
[13] 曹瑛, 李志永, 卢晓鹏, 等. 基于自适应邻域双边滤波的点目标检测预处理算法[J]. 电子与信息学报,2008,30(8):1909-1912 CAO Ying, LI Zhiyong, LU Xiaopeng, et al. A preprocessing algorithm of point target detection based on temporal-spatial bilateral filter using adaptive neighborhoods[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1909-1912. (in Chinese)
[14] ORTS-ESCOLANO S, GARCIA-RODRIGUEZ J, MORELL V, et al. 3D surface reconstruction of noisy point clouds using growing neural gas: 3D object/scene reconstruction[J]. Neural Processing Letters, 2016, 43(2): 401-423. doi: 10.1007/s11063-015-9421-x
[15] 宋子龙, 梁经纬, 祝志恒, 等. CCTV视觉图像处理方法在土石坝涵管病害诊断中的应用[J]. 水利水运工程学报,2019(2):99-103 doi: 10.12170/201902014 SONG Zilong, LIANG Jingwei, ZHU Zhiheng, et al. Application of CCTV visual image processing method in culvert disease diagnosis of earth-rock fill dam[J]. Hydro-Science and Engineering, 2019(2): 99-103. (in Chinese) doi: 10.12170/201902014
[16] GUAN H Y, YU Y T, LI J, et al. Pole-like Road object detection in mobile LiDAR data via supervoxel and bag-of-contextual-visual-words representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 520-524. doi: 10.1109/LGRS.2016.2521684
[17] HUSAIN A, VAISHYA R C. A time efficient algorithm for ground point filtering from mobile LiDAR data[C]∥2016 International Conference on Control, Computing, Communication and Materials (ICCCCM). Allahbad, India: Motilal Nehru National Institute of Technology, 2016: 1-5.
[18] 韩先锋. 三维点云去噪处理及特征描述的研究[D]. 天津: 天津大学, 2019. HAN Xianfeng. Research on denoising processing and feature description for 3D point cloud[D]. Tianjin: Tianjin University, 2019. (in Chinese)