长江口盐和泥沙密度分层对垂向紊动扩散的影响

王心雨, 顾峰峰, 李俊花

王心雨,顾峰峰,李俊花. 长江口盐和泥沙密度分层对垂向紊动扩散的影响[J]. 水利水运工程学报,2024(1):15-26.. DOI: 10.12170/20221027001
引用本文: 王心雨,顾峰峰,李俊花. 长江口盐和泥沙密度分层对垂向紊动扩散的影响[J]. 水利水运工程学报,2024(1):15-26.. DOI: 10.12170/20221027001
(WANG Xinyu, GU Fengfeng, LI Junhua. The impact of salt and sediment density stratification on vertical turbulent mixing in the Yangtze River Estuary[J]. Hydro-Science and Engineering, 2024(1): 15-26. (in Chinese)). DOI: 10.12170/20221027001
Citation: (WANG Xinyu, GU Fengfeng, LI Junhua. The impact of salt and sediment density stratification on vertical turbulent mixing in the Yangtze River Estuary[J]. Hydro-Science and Engineering, 2024(1): 15-26. (in Chinese)). DOI: 10.12170/20221027001

长江口盐和泥沙密度分层对垂向紊动扩散的影响

基金项目: 上海市科学技术委员会科研计划项目(21DZ1201700,21DZ1201002)
详细信息
    作者简介:

    王心雨(1998—),女,安徽固镇人,硕士研究生,主要从事港口、海岸及近海工程研究。E-mail:461571032@qq.com

    通讯作者:

    顾峰峰(E-mail:gffecsrc@aliyun.com

  • 中图分类号: TV143.1

The impact of salt and sediment density stratification on vertical turbulent mixing in the Yangtze River Estuary

  • 摘要:

    为研究河口水域盐和泥沙的垂向密度分层对垂向紊动扩散的影响,基于长江口北槽12.5 m深水航道南侧的实测水沙盐资料,分析长江口北槽水域的盐度及含沙量垂向分布特征,并利用Richardson数和PP81方案的零方程模型计算垂向紊动扩散系数,研究北槽水域盐和泥沙的垂向密度分层对垂向紊动扩散的影响。结果表明:盐和泥沙垂向密度分层影响下,长江口北槽河段沿程水体的垂向紊动扩散系数由近底层向近表层增大,水体中盐和泥沙等物质的垂向密度分层在北槽中下游河段对水体垂向紊动扩散产生较为明显的抑制作用;盐的垂向密度分层对水体垂向紊动扩散系数的抑制影响程度为大潮小于小潮、涨潮大于落潮;泥沙垂向密度分层的抑制影响为大潮大于小潮、涨潮大于落潮;盐的垂向密度分层是抑制水体垂向紊动扩散的主要因素,清水和盐水条件下的垂向紊动扩散系数比值最大可达5;泥沙的抑制作用相对较弱,清水和浑水条件下的水体垂向紊动扩散系数比值最大为2,垂向紊动抑制影响最大区域出现在近底层;盐和泥沙综合作用下的垂向密度分层,对物质垂向紊动扩散抑制程度更为明显,抑制前后物质垂向紊动扩散系数的比值在北槽中段的近底层达到最大值(约22)。

    Abstract:

    This study examines vertical density stratification of salt and sediment in estuaries. Data were analyzed from the south side of a 12.5 m deep channel along the north channel of the Yangtze Estuary, including water, salt and sediment measurements. The overall distribution characteristics of salt and sediment content in the north channel waters were analyzed. The vertical turbulent diffusion coefficient was calculated using the Richardson number method and PP81 zero-equation model. This investigated the effect of vertical salt and sediment density stratification on vertical turbulent diffusion in the north channel waters. Results show the diffusion coefficient increases from near-bottom to near-surface layers with stratification. Stratification has a more pronounced inhibitory effect in the middle and lower reaches. Salt stratification results in less inhibition during spring than neap tides, and less during flood than ebb tides. Sediment stratification causes more inhibition during spring than neap tides, and more during flood than ebb tides. Salt stratification is the primary inhibitory factor, with coefficients up to 5 times lower under salt versus clear water. Inhibition by sediment is weaker, with coefficients up to 2 times lower under mud versus clear water, and strongest inhibition in near-bottom layers. Combined salt and sediment stratification more markedly inhibits material diffusion, with maximum coefficients of around 22 times lower in near-bottom mid-channel areas.

  • 图  1   北槽固定垂向测点分布

    Figure  1.   Vertical measurement point locations in the north channel

    图  2   潮周期平均盐度

    Figure  2.   Mean salinity of tide cycle

    图  3   潮周期平均含沙量

    Figure  3.   Mean sediment concentration of tide cycle

    图  4   潮周期平均流速

    Figure  4.   Mean velocity of tide cycles

    图  5   潮周期盐度分层系数

    Figure  5.   Stratification coefficient of salinity of tidal cycles

    图  6   潮周期含沙量分层系数

    Figure  6.   Stratification coefficient of sediment of tidal cycles

    图  7   无紊动抑制下的水体垂向紊动扩散系数

    Figure  7.   Water vertical turbulent diffusivity without turbulence suppression

    图  8   紊动抑制下的水体垂向紊动扩散系数

    Figure  8.   Water vertical turbulent diffusivity with turbulence suppression

    图  9   清水与盐水的水体垂向紊动扩散系数比值

    Figure  9.   Ratio of vertical turbulent diffusivity in clear water vs salt water

    图  10   清水与浑水的水体垂向紊动扩散系数比值

    Figure  10.   Ratio of vertical turbulent diffusivity in clear water vs muddy water

    图  11   紊动抑制前后水体垂向紊动扩散系数比值

    Figure  11.   Ratio of vertical turbulent diffusivity before and after turbulence suppression

    图  12   近底层水体垂向紊动扩散系数比值

    Figure  12.   Ratio of vertical turbulent diffusivity in the near-bottom layer

    图  13   紊动抑制下的物质垂向紊动扩散系数

    Figure  13.   Vertical turbulent diffusivity of materials with stratification effects

    图  14   紊动抑制前后物质垂向紊动扩散系数的比值

    Figure  14.   Ratio of material vertical turbulent diffusivity before and after turbulence suppression

    图  15   各站点物质垂向紊动扩散系数

    Figure  15.   Vertical turbulent diffusivity profiles at measurement stations

    图  16   近底层抑制前后物质垂向紊动扩散系数比值

    Figure  16.   Ratio of material vertical turbulent diffusivity before and after turbulence suppression of near-bottom layer

  • [1] 沈焕庭, 茅志昌, 顾玉亮. 东线南水北调工程对长江口咸水入侵影响及对策[J]. 长江流域资源与环境,2002,11(2):150-154 doi: 10.3969/j.issn.1004-8227.2002.02.011

    SHEN Huanting, MAO Zhichang, GU Yuliang. Impact of south-north water transfer (east route) on saltwater intrusion in the Changjiang Estuary with consideration of its countermeasures[J]. Resources and Environment in the Yangtze Basin, 2002, 11(2): 150-154. (in Chinese) doi: 10.3969/j.issn.1004-8227.2002.02.011

    [2]

    LI Y C, LIU J G. A numerical study on salinity stratification at the Oujiang River Estuary, China[J]. Acta Oceanologica Sinica, 2019, 38(11): 40-50. doi: 10.1007/s13131-019-1497-0

    [3]

    LI Y, WANG Y P, ZHU Q G, et al. Roles of advection and sediment resuspension-settling in the turbidity maximum zone of the Changjiang Estuary, China[J]. Continental Shelf Research, 2021, 229: 104559. doi: 10.1016/j.csr.2021.104559

    [4]

    VINH V D, OUILLON S. The double structure of the Estuarine Turbidity Maximum in the Cam-Nam Trieu mesotidal tropical estuary, Vietnam[J]. Marine Geology, 2021, 442: 106670. doi: 10.1016/j.margeo.2021.106670

    [5]

    ZHU W W, LI J F, LI W H. Observations of fine sediment flocculation in the turbidity maximum of the Changjiang Estuary[J]. Journal of Sea Research, 2022, 179: 102150. doi: 10.1016/j.seares.2021.102150

    [6] 于东生, 田淳, 严以新. 长江口悬沙含量垂向分布数值模拟[J]. 水利水运工程学报,2004(1):35-40 doi: 10.3969/j.issn.1009-640X.2004.01.007

    YU Dongsheng, TIAN Chun, YAN Yixin. Numerical simulation of vertical distribution of suspended sediment in the Yangtze River Estuary[J]. Hydro-Science and Engineering, 2004(1): 35-40. (in Chinese) doi: 10.3969/j.issn.1009-640X.2004.01.007

    [7] 王家生, 陈立, 刘林, 等. 粘性泥沙分层运动特征的试验研究[J]. 水科学进展,2008,19(1):13-18 doi: 10.3321/j.issn:1001-6791.2008.01.003

    WANG Jiasheng, CHEN Li, LIU Lin, et al. Experimental study of feature of the cohesive sediment lamination movement[J]. Advances in Water Science, 2008, 19(1): 13-18. (in Chinese) doi: 10.3321/j.issn:1001-6791.2008.01.003

    [8]

    LU T, WU H, ZHANG F, et al. Constraints of salinity- and sediment-induced stratification on the turbidity maximum in a tidal estuary[J]. Geo-Marine Letters, 2020, 40(5): 765-779. doi: 10.1007/s00367-020-00670-8

    [9] 金镠. 细颗粒泥沙运动及滩槽交换对航道回淤的影响[J]. 水运工程,2019(8):111-116 doi: 10.3969/j.issn.1002-4972.2019.08.022

    JIN Liu. Influences of fine sediment transport and transversal sediment transport between shoal and channel on channel siltation[J]. Port & Waterway Engineering, 2019(8): 111-116. (in Chinese) doi: 10.3969/j.issn.1002-4972.2019.08.022

    [10]

    GEYER W R, CANNON G A. Sill processes related to deep water renewal in a fjord[J]. Journal of Geophysical Research, 1982, 87(C10): 7985. doi: 10.1029/JC087iC10p07985

    [11] 王寇, 李博, 李爱国, 等. 夏季长江口及其邻近海域湍流特征分析[J]. 海洋学报,2021,43(11):22-31

    WANG Kou, LI Bo, LI Aiguo, et al. Characteristics of turbulence in the Changjiang River Estuary and its adjacent waters in summer[J]. Acta Oceanologica Sinica, 2021, 43(11): 22-31. (in Chinese)

    [12] 徐鹏昭, 杨伟, 赵亮, 等. 渤海弱层化期湍流混合观测特征分析[J]. 海洋学报,2020,42(3):1-9

    XU Pengzhao, YANG Wei, ZHAO Liang, et al. Observations of turbulent mixing in the Bohai Sea during weakly stratified period[J]. Acta Oceanologica Sinica, 2020, 42(3): 1-9. (in Chinese)

    [13] 姚炎明, 郑逸群, 赵新宇, 等. 椒江河口层化动力特性研究[J]. 海洋学报,2021,43(10):23-37

    YAO Yanming, ZHENG Yiqun, ZHAO Xinyu, et al. Characteristics of stratification in the Jiaojiang Estuary[J]. Acta Oceanologica Sinica, 2021, 43(10): 23-37. (in Chinese)

    [14] 杜雅静, 张庆河. 理想河口盐度层化的减阻效应研究[J]. 水道港口,2018,39(4):416-421

    DU Yajing, ZHANG Qinghe. Drag reduction induced by salinity stratification in an idealized estuary[J]. Journal of Waterway and Harbor, 2018, 39(4): 416-421. (in Chinese)

    [15] 黄睿, 张庆河, 邢恩博, 等. 盐度层化对水体紊动特性影响的实验研究[J]. 水力发电学报,2020,39(3):45-55

    HUANG Rui, ZHANG Qinghe, XING Enbo, et al. Experimental investigation on effects of salinity stratification on turbulence characteristics of water body[J]. Journal of Hydroelectric Engineering, 2020, 39(3): 45-55. (in Chinese)

    [16]

    PAL D, GHOSHAL K. Effect of particle concentration on sediment and turbulent diffusion coefficients in open-channel turbulent flow[J]. Environmental Earth Sciences, 2016, 75(18): 1245. doi: 10.1007/s12665-016-6045-z

    [17]

    HUANG R, ZHANG Q H, ZHANG W, et al. Experimental research on the effect of suspended sediment stratification on turbulence characteristics[J]. Estuarine, Coastal and Shelf Science, 2022, 278: 108128. doi: 10.1016/j.ecss.2022.108128

    [18]

    LU H F, GU F F, QI D M, et al. Investigating near-bottom hydrodynamic processes in the Yangtze River Estuary using in situ measurements[J]. Journal of Coastal Research, 2019, 35(4): 805. doi: 10.2112/JCOASTRES-D-18-00131.1

    [19] 乐灿, 王永红, 杨远东, 等. 珠江八大口门2016年枯季盐度同步观测及咸淡水混合研究[J]. 海洋地质前沿,2021,37(1):51-60 doi: 10.16028/j.1009-2722.2019.197

    YUE Can, WANG Yonghong, YANG Yuandong, et al. Synchronous observation of salinity for salt-fresh water mixing at the eight entrances of Pearl River in dry season of 2016[J]. Marine Geology Frontiers, 2021, 37(1): 51-60. (in Chinese) doi: 10.16028/j.1009-2722.2019.197

    [20] 谢荣耀, 刘锋, 罗向欣, 等. 河控型河口盐度层化对悬沙的捕集机制: 以洪季磨刀门河口为例[J]. 海洋学报,2021,43(5):38-49

    XIE Rongyao, LIU Feng, LUO Xiangxin, et al. Sediment trapping mechanism by salinity stratification in a river-dominted estuary: a case study of the Modaomen Estuary in flood season[J]. Acta Oceanologica Sinica, 2021, 43(5): 38-49. (in Chinese)

    [21] 李远, 李占海, 张钊, 等. 长江口北槽下游河道悬沙浓度垂向分布特征研究[J]. 华东师范大学学报(自然科学版),2017(6):114-125

    LI Yuan, LI Zhanhai, ZHANG Zhao, et al. Vertical distribution patterns of suspended sediment concentration in the North Passage of the Changjiang Estuary[J]. Journal of East China Normal University (Natural Science), 2017(6): 114-125. (in Chinese)

    [22] 赵军鹏, 龚文平, 王道儒. 海南岛南渡江河口的盐水入侵[J]. 海洋学报,2013,35(5):14-28

    ZHAO Junpeng, GONG Wenping, WANG Daoru. Saline intrusion in the Nandu River estuary, Hainan Island[J]. Acta Oceanologica Sinica, 2013, 35(5): 14-28. (in Chinese)

    [23] 熊龙兵, 浦祥, 时钟, 等. 潮汐应变对长江口北槽枯季湍流混合与层化的影响[J]. 海洋工程,2014,32(4):41-57

    XIONG Longbing, PU Xiang, SHI Zhong, et al. Effect of tidal straining on turbulent mixing and stratification in the dry season within the North Passage of the Changjiang River Estuary[J]. The Ocean Engineering, 2014, 32(4): 41-57. (in Chinese)

    [24]

    NUNES VAZ R A, SIMPSON J H. Turbulence closure modeling of estuarine stratification[J]. Journal of Geophysical Research, 1994, 99(C8): 16143. doi: 10.1029/94JC01200

    [25]

    PACANOWSKI R C, PHILANDER S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography, 1981, 11(11): 1443-1451. doi: 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2

    [26]

    TURNER J S, BENTON E R. Buoyancy effects in fluids[J]. Physics Today, 1974, 27(3): 52-53. doi: 10.1063/1.3128495

    [27]

    GEYER W R, MACCREADY P. The estuarine circulation[J]. Annual Review of Fluid Mechanics, 2014, 46: 175-197. doi: 10.1146/annurev-fluid-010313-141302

    [28]

    GRANT W D, MADSEN O S. The continental-shelf bottom boundary layer[J]. Annual Review of Fluid Mechanics, 1986, 18: 265-305. doi: 10.1146/annurev.fl.18.010186.001405

    [29]

    RICHARDSON L F. The supply of energy from and to atmospheric eddies[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1920, 97(686): 354-373. doi: 10.1098/rspa.1920.0039

    [30]

    GUAN W B, KOT S C, WOLANSKI E. 3-D fluid-mud dynamics in the Jiaojiang Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2005, 65(4): 747-762. doi: 10.1016/j.ecss.2005.05.017

    [31]

    MUNK W H, ANDERSON E R. Note on the theory of the thermocline[J]. Journal of Marine Research, 1948, 7(2): 276-295.

    [32] 匡翠萍. 长江口盐水入侵三维数值模拟[J]. 河海大学学报,1997(4):54-60

    KUANG Cuiping. A 3D numerical model for saltwater intrusion in the Changjiang Estuary[J]. Journal of Hohai University (Natural Sciences), 1997(4): 54-60. (in Chinese)

图(16)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 网络出版日期:  2023-10-06
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回