基于OVMD的大坝变形监测数据预处理方法

A preprocessing method for dam deformation monitoring data based on OVMD

  • 摘要: 变形是反映大坝安全性态的重要效应量之一,为提高变形监测数据粗差识别与降噪的可靠性,综合运用多种群并行Rao-1算法、变分模态分解和多种判别指标,提出一种非监督学习的大坝变形监测数据预处理方法。首先,该方法借助变分模态分解对单测点位移监测序列进行非递归分解,并引入平均包络熵为目标函数,采用多种群并行Rao-1算法确定变分模态分解适宜的超参数,以提升模型的分解性能。然后,借助样本熵和相关系数指标分离并定位包含粗差和噪声特征的高频模态。最后,借助箱线图法和模态叠加法分别实现变形监测数据的粗差辨识和降噪。以仿真数据和某大坝实测水平变形数据进行验证,结果表明该方法具备优异的粗差定位和降噪性能,可为大坝变形监测数据预处理提供新的思路和技术支持。

     

    Abstract: Deformation is one of the key indicators reflecting the safety status of dams. To enhance the reliability of gross error identification and noise reduction in deformation monitoring data, this study proposes an unsupervised preprocessing method combining the multi-population parallel Rao-1 algorithm, variational mode decomposition (VMD), and multiple discriminative indices. First, the method employs VMD to perform non-recursive decomposition of displacement monitoring sequences at individual measurement points. By introducing average envelope entropy as the objective function, the multi-population parallel Rao-1 algorithm is utilized to optimize VMD hyperparameters, thereby improving the decomposition performance. Subsequently, sample entropy and correlation coefficient indices are applied to separate and locate high-frequency modes containing gross errors and noise features. Finally, gross error identification and noise reduction are achieved through the boxplot method and mode superposition, respectively. Validation using both simulated data and actual horizontal deformation monitoring data of a dam demonstrates that the proposed method excels in gross error localization and noise reduction. It provides novel insights and technical support for the preprocessing of dam deformation monitoring data.

     

/

返回文章
返回