Study on the earth pressure of sand on retaining walls with EPS blocks considering the arching effect
-
摘要:
在混凝土挡墙和墙后回填土之间放置土工泡沫(简称“EPS”)板,利用EPS板的压缩变形能够有效减少作用在挡墙墙体上的土压力,但同时也导致这类挡墙(简称“EPS板减压挡墙”)墙后土压力的分布及大小与刚性挡土墙大不相同。通过开展EPS板减压砂土挡墙模型试验,研究了挡墙墙后回填砂土的位移模式和土压力分布规律,在此基础上提出了能够考虑土拱效应的EPS板减压砂土挡墙土压力的计算方法,并进一步分析了EPS板密度和厚度对墙后土压力的影响。结果表明:上覆荷载作用下,EPS板减压砂土挡墙墙后填土中产生近似三角形的滑楔体,滑楔体滑动面贯穿至EPS板中部;EPS板减压砂土挡墙土压力呈非线性分布,随着上覆荷载的增大,土压力从随墙深的增加变化为随墙深的减小;EPS板厚度越大、密度越小,EPS板减压砂土挡墙墙后土压力越小,当墙后土压力减少至主动土压力,EPS厚度的进一步增大和密度的进一步减少均不再产生影响。研究结果可为减压挡墙结构中土工泡沫板的优化设计提供理论支撑。
Abstract:Expanded polystyrene geofoam (EPS) blocks, placed between a retaining wall and the backfill soil, can effectively reduce the earth pressure acting on the wall due to their compressibility. However, this also leads to a distribution and magnitude of earth pressure behind such retaining walls (hereafter referred to as “EPS block-reduced-pressure retaining walls”) that differ significantly from those of rigid retaining walls. In this study, model tests were conducted to investigate the displacement pattern of the sand backfill and the distribution of earth pressure behind retaining walls with EPS blocks. Based on these observations, a calculation method for earth pressure considering the arching effect was proposed. Furthermore, the influence of EPS block density and thickness on earth pressure was analyzed. The results indicate that under a surcharge load, an approximately triangular sliding wedge forms in the backfill behind the wall, with the sliding surface extending into the middle of the EPS block. The earth pressure distribution on the EPS block-reduced-pressure retaining wall is nonlinear; as the surcharge load increases, the earth pressure varies from increasing to decreasing with wall depth. The greater the thickness and the lower the density of the EPS block, the smaller the earth pressure behind the wall. When the earth pressure is reduced to the level of active earth pressure, further increases in EPS thickness or reductions in density have no additional effect. These findings provide theoretical support for the optimized design of geofoam inclusions in reduced-pressure retaining wall structures.
-
Keywords:
- retaining wall /
- EPS block /
- displacement pattern /
- earth pressure /
- arching effect
-
运河两岸、渠道等水利工程中普遍使用的挡墙为砌石、混凝土、钢筋混凝土等材料建造的刚性挡墙,这类挡墙通常以墙体重力来维持自身的稳定性,因此挡墙墙体体积大,对地基要求也高[1-4]。20世纪90年代末,采用在挡墙与填土之间设置土工泡沫(简称“EPS”)板来减小挡墙土压力的技术,这种挡墙被称为EPS板减压挡墙[5]。EPS板减压挡墙利用EPS板的高压缩性,为墙后填土变形提供空间,理论上可有效减少挡墙受到的土压力。为探究EPS板减少挡墙土压力性能,国内外学者对EPS板减压挡墙开展了广泛研究。Ertugrul等[6-7]通过模型试验研究发现,EPS板减压挡墙利用EPS板的压缩变形,使土压力从静止状态变为主动状态,从而减少由填土自重和上覆荷载引起的作用在墙体上的土压力,混凝土墙体本身的厚度因此可减小,同时降低处理地基的费用;EPS板减少不可动刚性挡墙土压力的效果明显,对可动挡墙和柔性挡墙土压力的减压效果不明显;郑俊杰等[8]通过数值模拟发现EPS板密度和厚度对其减少刚性挡墙土压力的效果有着显著影响。
土压力是进行挡墙断面设计和稳定验算的重要荷载,Ni等[9-11]假定在墙后填土上方施加荷载时,EPS板压缩变形从墙顶到墙底呈线性增大,从而推导了EPS板减压挡墙墙后土压力的计算公式,为EPS板减压挡墙的设计提供了科学依据。然而,大量研究结果表明,挡墙墙后土压力沿墙高呈非线性分布[12-14]。此外,Terzaghi通过活动门试验验证了回填土滑楔体内的土拱效应,土拱效应的存在影响了挡墙墙后土压力的分布和大小[15],这说明忽视土拱效应可能导致土压力计算不准确。但以往提出的EPS板减压挡墙土压力计算方法均未考虑土拱效应的影响。为此,本文开展回填土为砂土的EPS板减压挡墙模型试验,研究EPS板减压砂土挡墙位移模式和土压力分布规律;假定墙后回填土滑楔体内土拱形状为圆弧形,基于微分单元法给出考虑土拱效应的EPS板减压砂土挡墙土压力的计算方法,并通过与模型试验结果对比,验证所提出计算方法的合理性;基于该计算方法,最后分析了EPS板厚度和密度对挡墙墙后土压力的影响。
1. 模型试验
1.1 试验概况
EPS板减压砂土挡墙试验模型由混凝土和有机玻璃围成,尺寸为200.0 cm × 150.0 cm × 120.0 cm(长×宽×高),顶部开放,如图1所示。其中,混凝土挡墙和有机玻璃板的底部及两者衔接处进行固定,以保证其试验过程中保持不动。EPS板紧贴混凝土挡墙墙面放置,EPS板尺寸为30.0 cm × 150.0 cm × 120.0 cm(厚×宽×高),密度为12 kg/m3。取边长为5.0 cm的EPS板立方体块进行压缩试验(压缩速度为10%/min),试验结果如图2所示。可以看出,EPS板压缩应力应变关系曲线近似呈双直线,曲线在两直线交点处应变εint约为2.9%,弯点处应力σint约为41.6 kPa。
EPS板后分层填筑烘干的砂土,所用砂土比重为2.65,砂土填筑压实度为70%(密度为1.73 kg/m3),密度下砂土内摩擦角为33.2°。回填砂土上方放置于50 cm宽的加载板,用于施加上覆荷载。采用有限宽度的上覆荷载而非全宽,是因为荷载宽度过大时,墙底会产生边界效应,影响墙后填土位移形式[16]。
为了监测EPS板减压砂土挡墙的工作性状,在混凝土挡墙背面每隔0.1 m固定一个直径为2.0 cm、高度为0.5 cm的小型土压力盒(共计11个),如图1所示。土压力盒测量范围为0~50.0 kPa,测量误差小于0.1 kPa。为观察回填砂土的位移模式,在玻璃外侧每隔5.0 cm画数条黑色标记线,玻璃内侧摆列相同数量和位置的红色棉线。内侧的红色棉线可随着回填砂土的移动而移动,通过比较内侧和外侧线条的相对位置获得回填砂土的位移。
1.2 试验结果
图3(a)为上覆荷载为24.0 kPa时,通过内、外线条比较得到的回填砂土位移。由于EPS板在土压力下的压缩变形,回填砂土中形成滑楔体。滑楔体与刚性挡墙(即没有EPS板等减压措施的混凝土挡墙)墙体背离填土平移时产生的滑楔体的不同之处在于:刚性挡墙墙体刚度较大,墙体在土压力作用下整体发生平移,因此滑楔体穿过墙底[11],如图3(b)所示;而在EPS板减压砂土挡墙中,混凝土挡墙固定不动,EPS板是柔性体,因此滑楔体底部可贯穿至EPS板的中部。相同之处在于:滑楔体近似为三角形,EPS板减压砂土挡墙滑楔体滑动角度与刚性挡墙平移引起的滑楔体滑动角度保持一致,均接近库伦滑动角θ[16]。θ的计算公式为:
$$ \theta {\text{ = arctan(tan}}{\varphi _{\text{f}}}{\text{ + }}\sqrt {{{\tan }^2}{\varphi _{\text{f}}} + {\text{tan}}{\varphi _{\text{f}}}/\tan ({\varphi _{\text{f}}} + {\delta _{\text{f}}})} ) $$ (1) 式中:$\varphi _{\text{f}} $为填土内摩擦角;δf为EPS板与填土的摩擦角。
图4为上覆荷载为8.0 和24.0 kPa时,挡墙墙后土压力沿墙深的分布。可以看出,两种上覆荷载作用下EPS板减压砂土挡墙土压力沿墙深均呈现非线性分布。在上覆荷载为8.0 kPa时,土压力随着墙体深度增加而增大;当上覆荷载达到24.0 kPa时,土压力随着墙体深度增加而减小。王元战等[17]提出,由于上覆荷载作用的影响,挡墙的侧向土压力系数随着深度的增加而减小。因此,在回填土上方施加较大的上覆荷载后,墙顶部的土压力可能会超过底部的土压力。从图4还可以看出,滑楔体下方墙体所受土压力在很大程度上不受上覆荷载的影响,这种情况可能归因于土拱效应,即滑楔体作用力主要作用于左右两侧的EPS板和静止土体,而不是施加给基底填土。
2. 考虑土拱效应的土压力计算方法
2.1 分析模型
在计算砂性回填土挡墙墙后土压力时,通常以墙后滑楔体为研究对象进行分析。将EPS板和墙后滑楔体分成多个单独存在的水平微分单元,如图5(a)所示。在未施加上覆荷载时,填土和EPS板处于静止状态,此时土压力为静止土压力,深度z处填土水平微分单元产生的水平应力为σx0,即图5(b)中的A点状态;在上覆荷载σv加载瞬间,填土单元来不及变形,此时填土单元产生的水平应力迅速增大至σx1(图5(b)中B点状态);之后EPS板单元在σx1作用下发生压缩变形而填土发生膨胀变形,作用在EPS板单元上的水平应力逐渐增大,填土单元产生的水平应力逐渐减少;当EPS板和填土单元水平位移Sxm和水平应力σxwm相等时,即图5(b)中的C点状态,EPS板和填土单元达到平衡状态,两者不再发生变形。达到平衡状态时,EPS板和填土接触面方向并不完全竖直,而是和竖直方向产生一个微小的角度。简化起见,假定EPS板和填土接触面方向完全竖直,则σxwm方向完全水平。由于挡墙固定不动,根据力的作用力与反作用力原理,作用在挡墙深度z处的土压力为σxwm。
2.2 土拱效应
当EPS板侧向压缩位移、应力分别和填土侧向膨胀位移、应力相等时,墙后填土土压力可能处于非极限状态或主动状态。假设上覆荷载增大至σva时深度为z处的填土土压力达到主动状态,达到主动状态时填土发生的位移为Sa,那么当上覆荷载σv≥σva时,墙后填土土压力均处于主动状态,如图6所示;而当上覆荷载σv满足0<σv=σvm<σva时,墙后填土则处于非极限状态。实际上,静止状态和主动状态也可以看作是非极限状态的特殊工况,因此本文选择对非极限状态下EPS板减压挡墙墙后回填土滑楔体进行分析。
为考虑土拱效应的影响,将滑楔体分成多个单独存在的水平微分单元,如图7所示。深度z处的微分单元宽度Bm=Rcosαm,其中R为图7所示EPS板背面A点处小主应力土拱线的极径,αm为A点大主应力方向与水平面的夹角。回填土滑楔体内的土拱形状可假定为圆弧形[15,18],由于土拱的影响,图7中最初位于微分单元的点B随后位于凹拱点C处。点C处水平向压力σxm表示为:
$$ {\sigma _{x{\text{m}}}} = {\sigma _{1{\text{m}}}}{\cos ^2}{\psi _{\text{m}}} + {\sigma _{{\text{3m}}}}{\sin ^2}{\psi _{\text{m}}} $$ (2) 式中:σ1m和σ3m为点C处的大、小主应力;ψm为B点大主应力方向与水平面的夹角。相似地,作用在A点的水平应力σxwm表示为:
$$ {\sigma _{x{\text{wm}}}} = {\sigma _{1{\text{m}}}}{\cos ^2}{\alpha _{\text{m}}} + {\sigma _{{\text{3m}}}}{\sin ^2}{\alpha _{\text{m}}} $$ (3) 式(3)左右各除以σ1m,得到:
$$ \frac{{{\sigma _{x{\text{wm}}}}}}{{{\sigma _{1{\text{m}}}}}} = {\cos ^2}{\alpha _{\text{m}}} + \frac{1}{{{N_{\text{m}}}}}{\sin ^2}{\alpha _{\text{m}}} $$ (4) 式中:Nm为大、小主应力之比;Nm = σ1m/σ3m =tan2(45+φm/2);φm为填土内摩擦角发挥值(φ0<φm<φf,φ0为填土内摩擦角初始值)。
2.3 土压力计算
如果得到填土和EPS板侧向应力应变关系,则可以根据图5(b)所示的挡墙墙后填土和EPS板相互作用关系求得位移Sxm和侧向应力σxwm。下面依次对填土和EPS板应力应变关系进行求解。
2.3.1 填土侧向应力与位移关系
式(3)给出了填土侧向应力σxwm与αm、σ1m的关系,通过求解αm和σ1m,则可以得到填土侧向应力σxwm的表达式。首先对αm进行求解。当EPS板背部和土体摩擦角发挥值δm小于土体内摩擦角发挥值φm时(一般情况下该条件都会成立),利用图8所示的莫尔圆推导αm的表达式为:
$$ {\alpha _{\text{m}}} = {\text{arccos}}\left(\frac{{{\tau _{\text{m}}}}}{{{\sigma _{x{\text{wm}}}} - {\sigma _{{\text{3m}}}}}}\right) $$ (5) 式中:τm为图7中A点的剪切应力。将τm=σxwmtanδm代入式(5)可以得到:
$$ \tan {\alpha _{\text{m}}} = \frac{{{\sigma _{x{\text{wm}}}}/{\sigma _{{\text{3m}}}}}}{{{\sigma _{x{\text{wm}}}}/{\sigma _{{\text{3m}}}} - 1}}\tan {\delta _{\text{m}}} $$ (6) 将式(3)左右除以σ3m,并代入到式(6)中可得αm的求解公式:
$$ {\alpha _{\text{m}}} = {\tan ^{ - 1}}\left[ {\frac{{{N_{\text{m}}} - 1 + \sqrt {{{({N_{\text{m}}} - 1)}^2} - 4{N_{\text{m}}}{{\tan }^2}{\delta _{\text{m}}}} }}{{2\tan {\delta _{\text{m}}}}}} \right] $$ (7) 进一步对σ1m进行求解。从图7取出微分单元进行受力分析,单元主要受到顶部垂直应力σvm(σvm=γz+σv,γ为填土重度,σv为上覆荷载)、底部垂直应力σvm+dσvm、EPS板的反作用应力pm、填土静止部分的反作用应力Rm和微分单元自重应力dWm(dWm=(H−z)cotθdz,H为滑楔体的高度)。
微分单元水平、垂直方向受力平衡方程以及微分单元与静止土体接触面中点力矩平衡方程分别为:
$$ {p_{\text{m}}}\cos {\delta _{\text{m}}}{\text{d}}{\textit{z}} - {R_{_{\text{m}}}}\cos (90 - \theta + {\varphi _{\text{m}}})/\sin \theta {\text{d}}{\textit{z}} = 0 $$ (8) $$ {\sigma _{{\text{vm}}}}(H - {\textit{z}})cot\theta - ({\sigma _{{\text{vm}}}} + {\text{d}}{\sigma _{{\text{vm}}}})(H - {\textit{z}} - {\text{d}}{\textit{z}})cot\theta + {\text{d}}{W_{\text{m}}} - {p_{\text{m}}}sin{\delta _{\text{m}}}{\text{d}}{\textit{z}} - {R_{\text{m}}}\sin (90 - \theta + {\varphi _{\text{m}}})/sin\theta {\text{d}}{\textit{z}} = 0 $$ (9) $$ \begin{gathered} {p_{\text{m}}}(H - {\textit{z}} - {\text{d}}{\textit{z}}/2)cot\theta sin{\delta _{\text{m}}}{\text{d}}{\textit{z}} - {\sigma _{{\text{vm}}}}(H - {\textit{z}})(H - {\textit{z}} - {\text{d}}{\textit{z}})cot\theta cot\theta /2 + \\ ({\sigma _{{\text{vm}}}} + {\text{d}}{\sigma _{{\text{vm}}}})(H - {\textit{z}})(H - {\textit{z}} - {\text{d}}{\textit{z}})co{t^2}\theta /2 - \gamma (H - {\textit{z}} - {\text{d}}{\textit{z}})(H - {\textit{z}})co{t^2}\theta {\text{d}}{\textit{z}}/2 = 0 \\ \end{gathered} $$ (10) 忽略二阶微分,式(8)~式(10)可分别化简为:
$$ {R_{\text{m}}} = {p_{\text{m}}}\cos {\delta _{\text{m}}}sin\theta /sin(\theta - {\varphi _{\text{m}}}) $$ (11) $$ {\text{d}}{\sigma _{{\text{vm}}}} = \gamma {\text{d}}{\textit{z}} + {\sigma _{{\text{vm}}}}{\text{d}}{\textit{z}}/(H - {\textit{z}}) - {p_{\text{m}}}\tan \theta \sin {\delta _{\text{m}}}[1 + cot{\delta _{\text{m}}}\cot (\theta - {\varphi _{\text{m}}})]{\text{d}}{\textit{z}}/(H - {\textit{z}}) $$ (12) $$ {\text{d}}{\sigma _{{\text{vm}}}} = \gamma {\text{d}}{\textit{z}} - 2{p_{\text{m}}}{\text{d}}{\textit{z}}\tan \theta \sin {\delta _{\text{m}}}/(H - {\textit{z}}) $$ (13) 联立式(11)~式(13)可得:
$$ \frac{{{\text{d}}{\sigma _{{\text{vm}}}}}}{{{\text{d}}{\textit{z}}}} = - A\frac{{{\sigma _{{\text{vm}}}}}}{{H - {\textit{z}}}} + \gamma $$ (14) 式(14)中,A=2tanθsinδm/[tanθsinδm(cosδmcot(θ−φm)−1)]。
对式(14)微分方程求解,并根据z=0的边界条件可得:
$$ {\sigma _{{\text{vm}}}} = \left({\sigma _{\text{v}}} - \frac{{\gamma H}}{{A{{ - 1}}}}\right)\left(\frac{{H - {\textit{z}}}}{H}\right)^{\text{A}} + \frac{{\gamma H}}{{A{{ - 1}}}}\left(\frac{{H - {\textit{z}}}}{H}\right) $$ (15) 根据式(15),作用在微分单元顶部压力可表示为:
$$ {V_{\text{m}}} = {\sigma _{{\text{vm}}}}{B_{\text{m}}} = \int_0^{\frac{\pi }{2}} {{\sigma _{{\text{1m}}}}\left({{\cos }^2}{\psi _{\text{m}}} + \frac{1}{{{N_{\text{m}}}}}{{\sin }^2}{\psi _{\text{m}}}\right)} d{\psi _{\text{m}}} $$ (16) 根据式(16)可进一步得到σ1m和σvm的关系:
$$ {\sigma _{{\text{vm}}}} = {\sigma _{{\text{1m}}}}\left(1 - \frac{{{N_{\text{m}}} - 1}}{{3{N_{\text{m}}}}}{\cos ^2}{a_{\text{m}}}\right) $$ (17) 联合式(15)和式(17),则可得到σ1m的计算公式:
$$ {\sigma _{{\text{1m}}}} = \left[\left({\sigma _{\text{v}}} - \frac{{\gamma H}}{{A{{ - 1}}}}\right)\left(\frac{{H - {\textit{z}}}}{H}\right)^{\text{A}} + \frac{{\gamma H}}{{A{{ - 1}}}}\left(\frac{{H - {\textit{z}}}}{H}\right)\right]/\left(1 - \frac{{{N_{\text{m}}} - 1}}{{3{N_{\text{m}}}}}{\cos ^2}{a_{\text{m}}}\right) $$ (18) 根据式(7)和(18)可分别求解αm和σ1m,但在具体求解前还需要知道EPS板背部和土体摩擦角的发挥值δm及土体内摩擦角的发挥值φm。Bian等[19]给出了砂土δm和φm随墙体位移Sm变化的计算公式:
$$ \begin{gathered} \tan {\delta _{\text{m}}} = \tan {\delta _{\text{0}}} + (tan{\delta _{\text{f}}} - \tan {\delta _{\text{0}}}){S_{x{\text{m}}}}/{S_{\text{a}}} \\ \tan {\varphi _{\text{m}}} = \tan {\varphi _{\text{0}}} + (tan{\varphi _{\text{f}}} - \tan {\varphi _{\text{0}}}){S_{x{\text{m}}}}/{S_{\text{a}}} \\ \end{gathered} $$ (19) $$ {S_{\text{a}}} = H(7.0 - 0.13\sin {\varphi _{\text{f}}})({10^{ - 4}}) $$ (20) $$ {(1/\cos {\varphi _0} + \sqrt {{{\tan }^2}{\varphi _0} + \tan {\varphi _0}\tan {\delta _0}} )^2} = 1/{K_0} $$ (21) 式中:δ0=φf/2;K0为静止土压力系数,K0=sinφf−0.16[20]。
给定一个Sxm,根据式(19)得到δm和φm,然后代入式(7)和(18)进一步求解出am和σ1m,再代入式(3)即可得到填土产生的侧向应力σxwm,由此得到填土侧向应力与位移关系。
2.3.2 EPS板侧向应力与位移关系
工程要求EPS板工作时其应力应变曲线应处于如图2所示的第一阶段[5],因此EPS板减压挡墙中其应力与变形的关系可表示为:
$$ {\sigma _{x{\text{wm}}}} = {S_{x{\text{m}}}}{E_{{\text{EPS}}}}/{B_{{\text{EPS}}}} + {K_0}\gamma {\textit{z}} $$ (22) 式中:EEPS为图2所示第一阶段的EPS板弹性模量,EEPS=σint/εint。给定一个Sxm,则可根据式(22)得到EPS板上的水平应力,由此得到EPS板侧向应力与位移的关系。
2.4 计算流程
图9给出了本文所提出的EPS板减压砂土挡墙土压力计算方法的具体流程,以便于该方法在工程中的使用。
3. 案例与影响因素分析
3.1 案例分析
EPS板减压挡墙模型试验中,γ=17.0 kN/m3,φf=33.2°,δf=19.8°,H=0.84 m,BEPS=0.30 m,EEPS=1.435 MPa。根据上述计算方法计算出上覆荷载为8.0和24.0 kPa时EPS板减压挡墙土压力沿墙深的分布如图10所示。可以看出,计算结果与试验结果较为吻合,证明了计算方法的合理性。进一步计算出不同上覆荷载下挡墙静止土压力和主动土压力,如图10所示。从图10(a)可以看出,在8.0 kPa的上覆荷载下,挡墙上部土压力接近主动土压力,表明此部分(粉色部分)回填土处于主动状态,蓝色部分挡墙墙深不同位置的土压力均处于主动与静止土压力之间,这表明此部分墙后回填土处于非极限状态。当上覆荷载达到24.0 kPa时,达到主动状态的填土部分增大。这说明上覆荷载越大,达到主动状态的回填土范围越大。
3.2 影响因素分析
图11给出了EPS板厚度对挡墙土压力分布的影响。随着EPS板厚度的增大,作用在挡墙上的土压力逐渐减少,这是因为在相同荷载下,厚度更大的EPS板位移更大,墙后填土抗剪强度得以更多释放。其中上覆荷载为24.0 kPa时,EPS板厚度从0.30 m增大至0.50 m不同墙深的土压力基本不变。这是因为EPS厚度为0.30 m时,24.0 kPa的上覆荷载下挡墙上部土压力均已达到主动土压力(即最小土压力),即使增大EPS厚度,也只有下部分未达到主动土压力部分的土压力有所减小。
分别挑选常见的密度分别为12、15和25 kg/m3的EPS板,探究EPS板密度对土压力分布的影响,3种密度的EPS板压缩应力应变曲线如图2所示。图12给出了不同EPS板密度下挡墙土压力的分布。随着EPS板密度的增大,作用在挡墙上的土压力逐渐增大,这是因为在相同荷载下,密度更大的EPS板弹性模量更大,产生的位移更小。其中上覆荷载为24.0 kPa时,EPS板密度从12 kg/m3增大至25 kg/m3时上部土压力几乎不变。这是因为24.0 kPa的上覆荷载作用下,3种EPS板密度的挡墙上部土压力均为主动土压力。
4. 结 语
通过开展EPS板减压砂土挡墙模型试验,研究挡墙墙后回填砂土位移模式和土压力分布规律,在此基础上提出了能够考虑土拱效应的EPS板减压砂土挡墙土压力的计算方法,并分析了EPS板密度和厚度对墙后土压力的影响规律。得到如下主要结论:
(1)上覆荷载作用下EPS板减压砂土挡墙墙后填土中产生近似为三角形的滑楔体,滑楔体滑动角度接近库伦滑动角。与刚性挡墙不同的是,滑楔体并未穿过挡墙底部而是贯穿至土工泡沫中部位置。
(2)上覆荷载作用下EPS板减压砂土挡墙墙后土压力呈非线性分布,随着上覆荷载的增大,土压力和达到主动状态的填土部分也随之增加,其分布规律从随墙深的增加变化为随墙深的减小。
(3)基于微分单元法提出的考虑土拱效应的EPS板减压砂土挡墙土压力计算方法得到的理论结果与试验结果的匹配性较好,证明了计算方法的有效性和适用性。
(4)EPS板厚度越大、密度越小,EPS板对挡墙土压力的减压效果越好;当挡墙土压力变为主动土压力时,EPS板厚度的进一步增大和密度的减少对土压力不再产生影响。
尽管本研究为EPS板减压砂土挡墙设计提供了一定的理论依据,但是当前的研究尚未考虑强震荷载、降雨条件及地下水位变化的影响。这些因素在实际工程应用中可能对挡墙性能产生显著影响,未来应对这些条件下的EPS板性能进行系统研究。
-
-
[1] 徐志峰, 赵晓明. 某船闸驳岸挡墙修护加固方案优化分析[J]. 水利水运工程学报,2015(5):103-108. (XU Zhifeng, ZHAO Xiaoming. Optimization analysis of repair-reinforcement scheme for shiplock revetment retaining wall[J]. Hydro-Science and Engineering, 2015(5): 103-108. (in Chinese) XU Zhifeng, ZHAO Xiaoming. Optimization analysis of repair-reinforcement scheme for shiplock revetment retaining wall[J]. Hydro-Science and Engineering, 2015(5): 103-108. (in Chinese)
[2] LIU S H, FAN K W, XU S Y. Field study of a retaining wall constructed with clay-filled soilbags[J]. Geotextiles and Geomembranes, 2019, 47(1): 87-94.
[3] 甘磊, 龙一飞, 沈振中, 等. 箱式绿化混凝土挡墙稳定及变形分析[J]. 三峡大学学报(自然科学版),2019,41(1):42-45. (GAN Lei, LONG Yifei, SHEN Zhenzhong, et al. Analyses of stability and deformation of tank type planting concrete retaining wall[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 42-45. (in Chinese) GAN Lei, LONG Yifei, SHEN Zhenzhong, et al. Analyses of stability and deformation of tank type planting concrete retaining wall[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 42-45. (in Chinese)
[4] 张明, 胡荣华, 刘国楠, 等. 基于离心试验的衡重式桩板挡墙受力特性研究[J]. 水利水电技术,2019,50(10):145-152. (ZHANG Min, HU Ronghua, LIU Guonan, et al. Centrifugal test-based study on mechanical behaviors of sheet pile wall with relieving platform[J]. Water Resources and Hydropower Engineering, 2019, 50(10): 145-152. (in Chinese) ZHANG Min, HU Ronghua, LIU Guonan, et al. Centrifugal test-based study on mechanical behaviors of sheet pile wall with relieving platform[J]. Water Resources and Hydropower Engineering, 2019, 50(10): 145-152. (in Chinese)
[5] 邹维列, 樊科伟, 张攀, 等. 土工泡沫减压膨胀土挡墙侧向压力及影响因素分析[J]. 岩土力学,2023,44(9):2537-2544, 2554. (ZOU Weilie, FAN Kewei, ZHANG Pan, et al. Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors[J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544, 2554. (in Chinese) ZOU Weilie, FAN Kewei, ZHANG Pan, et al. Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors[J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544, 2554. (in Chinese)
[6] ERTUGRUL O L, TRANDAFIR A C. Lateral earth pressures on flexible cantilever retaining walls with deformable geofoam inclusions[J]. Engineering Geology, 2013, 158: 23-33.
[7] ERTUGRUL O L, TRANDAFIR A C, YENER OZKAN M. Reduction of dynamic earth loads on flexible cantilever retaining walls by deformable geofoam panels[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 462-471.
[8] 郑俊杰, 景丹, 谢明星, 等. 刚性挡土墙后设置EPS垫层的设计方法研究[J]. 华中科技大学学报(自然科学版),2020,48(12):96-101. (ZHENG Junjie, JING Dan, XIE Mingxing, et al. Study on design scheme of installing EPS cushion behind the rigid retaining wall[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(12): 96-101. (in Chinese) ZHENG Junjie, JING Dan, XIE Mingxing, et al. Study on design scheme of installing EPS cushion behind the rigid retaining wall[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(12): 96-101. (in Chinese)
[9] NI P P, MEI G X, ZHAO Y L. Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions[J]. International Journal of Geomechanics, 2017, 17(6): 04016132.
[10] XIE M X, ZHENG J J, SHAO A D, et al. Study of lateral earth pressures on nonyielding retaining walls with deformable geofoam inclusions[J]. Geotextiles and Geomembranes, 2020, 48(5): 684-690.
[11] FAN K W, YAN J, ZOU W L, et al. Active earth pressure on non-yielding retaining walls with geofoam blocks and granular backfills[J]. Transportation Geotechnics, 2022, 33: 100712.
[12] 顾培, 高长胜, 杨守华, 等. 加筋土挡墙离心模型试验研究[J]. 水利水运工程学报,2010(2):67-72. (GU Pei, GAO Changsheng, YANG Shouhua, et al. Centrifuge model tests of reinforced earth retaining wall[J]. Hydro-Science and Engineering, 2010(2): 67-72. (in Chinese) doi: 10.3969/j.issn.1009-640X.2010.02.012 GU Pei, GAO Changsheng, YANG Shouhua, et al. Centrifuge model tests of reinforced earth retaining wall[J]. Hydro-Science and Engineering, 2010(2): 67-72. (in Chinese) doi: 10.3969/j.issn.1009-640X.2010.02.012
[13] 张建成, 侯天顺, 刘浩钰, 等. 刚性挡土墙后轻量土主动土压力特性模型试验研究[J]. 地震工程学报,2023,45(6):1397-1407. (ZHANG Jiancheng, HOU Tianshun, LIU Haoyu, et al. Model test of the active earth pressure characteristics of lightweight soil behind rigid retaining walls[J]. China Earthquake Engineering Journal, 2023, 45(6): 1397-1407. (in Chinese) ZHANG Jiancheng, HOU Tianshun, LIU Haoyu, et al. Model test of the active earth pressure characteristics of lightweight soil behind rigid retaining walls[J]. China Earthquake Engineering Journal, 2023, 45(6): 1397-1407. (in Chinese)
[14] 党发宁, 张乐, 王旭, 等. 基于弹性理论的有限位移条件下挡土墙上土压力解析[J]. 岩石力学与工程学报,2020,39(10):2094-2103. (DANG Faning, ZHANG Le, WANG Xu, et al. Analysis of earth pressure on retaining walls with limited displacement based on elastic theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2094-2103. (in Chinese) DANG Faning, ZHANG Le, WANG Xu, et al. Analysis of earth pressure on retaining walls with limited displacement based on elastic theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2094-2103. (in Chinese)
[15] 徐日庆, 徐叶斌, 程康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报,2020,42(2):362-371. (XU Riqing, XU Yebin, CHENG Kang, et al. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362-371. (in Chinese) doi: 10.11779/CJGE202002018 XU Riqing, XU Yebin, CHENG Kang, et al. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362-371. (in Chinese) doi: 10.11779/CJGE202002018
[16] FAN K W, YANG G Q, ZOU W L, et al. Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(4): 1388-1397.
[17] 王元战, 李新国, 陈楠楠. 挡土墙主动土压力分布与侧压力系数[J]. 岩土力学,2005,26(7):1019-1022. (WANG Yuanzhan, LI Xinguo, CHEN Nannan. Active earth pressure on a retaining wall and lateral coefficient of earth pressure[J]. Rock and Soil Mechanics, 2005, 26(7): 1019-1022. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.07.003 WANG Yuanzhan, LI Xinguo, CHEN Nannan. Active earth pressure on a retaining wall and lateral coefficient of earth pressure[J]. Rock and Soil Mechanics, 2005, 26(7): 1019-1022. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.07.003
[18] 姜彦彬, 何宁, 钱亚俊, 等. 桩承式加筋路堤荷载分担计算改进模型[J]. 水利水运工程学报,2023(1):131-139. (JIANG Yanbin, HE Ning, QIAN Yajun, et al. Modified load sharing calculation model of geosynthetic-reinforced and pile-supported embankments[J]. Hydro-Science and Engineering, 2023(1): 131-139. (in Chinese) doi: 10.12170/20211206001 JIANG Yanbin, HE Ning, QIAN Yajun, et al. Modified load sharing calculation model of geosynthetic-reinforced and pile-supported embankments[J]. Hydro-Science and Engineering, 2023(1): 131-139. (in Chinese) doi: 10.12170/20211206001
[19] BIAN C R, LAI Z Q, LIU R N, et al. Study on non-limited earth pressures of soilbag-reinforced retaining structures with surcharge loads[J]. Materials, 2024, 17(3): 611.
[20] 蔡正银, 代志宇, 徐光明, 等. 颗粒粒径和密实度对砂土K0值影响的离心模型试验研究[J]. 岩土力学,2020,41(12):3882-3888. (CAI Zhengyin, DAI Zhiyu, XU Guangming, et al. Effect of particle size and compaction on K0 value of sand by centrifugal model test[J]. Rock and Soil Mechanics, 2020, 41(12): 3882-3888. (in Chinese) CAI Zhengyin, DAI Zhiyu, XU Guangming, et al. Effect of particle size and compaction on K0 value of sand by centrifugal model test[J]. Rock and Soil Mechanics, 2020, 41(12): 3882-3888. (in Chinese)