(FENG Chenchen, WANG Zhiliang, WANG Haoran, et al. Particle flow simulation on compression failure and energy characteristics for marble containing pre-existing fissure[J]. Hydro-Science and Engineering, 2023(1): 53-62. (in Chinese)). DOI: 10.12170/20220112001
Citation: (FENG Chenchen, WANG Zhiliang, WANG Haoran, et al. Particle flow simulation on compression failure and energy characteristics for marble containing pre-existing fissure[J]. Hydro-Science and Engineering, 2023(1): 53-62. (in Chinese)). DOI: 10.12170/20220112001

Particle flow simulation on compression failure and energy characteristics for marble containing pre-existing fissure

More Information
  • Received Date: January 11, 2022
  • Available Online: August 04, 2022
  • To study the mechanism of different fissure parameters on rock deformation and failure and law of energy evolution, the X-ray diffraction and uniaxial compression tests were conducted on Jinping marble. Firstly, three-dimensional GBM was generated based on the X-ray diffraction results and particle flow code. Then, the mesoscopic parameters was calibrated according to the results of uniaxial compression tests of intact marble sample, and the numerical model containing various fissure parameters was constructed. Finally, the process of the deformation and failure along with the energy evolution of numerical samples was simulated and analyzed. The results show that the strength of sample increases first and then decreases with the increasing fissure dip angle. The strength of sample is intensified with the increase of the axial offset and fissure length. With an increase in the radial offset of fissure, the strength of sample decreases first and then increases. In addition, the influence degree of dip and spatial position of fissure on the strength of sample is related to the fissure length. When the fracture length is large, the dip angle inhibits the deterioration of axial offset and even changes the influence mode of radial offset. The hardening effect of dip angle on the sample strength is more obvious as fissure length is larger. It is also found that the length, dip and spatial position of fissure significantly change the failure mode of sample.
  • [1]
    李元海, 刘金杉, 唐晓杰, 等. 考虑裂隙的含孔洞软岩体力学特性模拟分析[J]. 采矿与安全工程学报,2020,37(3):594-603

    LI Yuanhai, LIU Jinshan, TANG Xiaojie, et al. Simulation analysis of mechanical properties of the soft rock mass with holes and fractures[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 594-603. (in Chinese)
    [2]
    LI Y P, CHEN L Z, WANG Y H. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2505-2516.
    [3]
    ZHANG J Z, ZHOU X P, ZHU J Y, et al. Quasi-static fracturing in double-flawed specimens under uniaxial loading: the role of strain rate[J]. International Journal of Fracture, 2018, 211(1/2): 75-102.
    [4]
    赵国彦, 李振阳, 吴浩, 等. 含非贯通裂隙砂岩的动力破坏特性研究[J]. 岩土力学,2019,40(增刊1):73-81

    ZHAO Guoyan, LI Zhenyang, WU Hao, et al. Dynamic failure characteristics of sandstone with non-penetrating cracks[J]. Rock and Soil Mechanics, 2019, 40(Suppl1): 73-81. (in Chinese)
    [5]
    AFOLAGBOYE L O, HE J M, WANG S J. Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression[J]. Acta Mechanica Sinica, 2017, 33(2): 394-405. doi: 10.1007/s10409-016-0624-9
    [6]
    刘新荣, 尹志明, 王艳磊. 含V型相交裂隙岩体的力学特性及破坏模式试验[J]. 煤炭学报,2020,45(2):651-659

    LIU Xinrong, YIN Zhiming, WANG Yanlei. Mechanical properties and failure mode of rock mass containing V-type intersecting fissures[J]. Journal of China Coal Society, 2020, 45(2): 651-659. (in Chinese)
    [7]
    王星辰, 王志亮, 黄佑鹏, 等. 预制裂隙岩样宏细观力学行为颗粒流数值模拟[J]. 水文地质工程地质,2021,48(4):86-92

    WANG Xingchen, WANG Zhiliang, HUANG Youpeng, et al. Particle flow simulation of macro-and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86-92. (in Chinese)
    [8]
    王浩然, 王志亮, 王星辰. 含缺陷岩样三轴压缩变形破坏过程颗粒流模拟[J]. 水利水运工程学报,2021(4):46-53 doi: 10.12170/20200912001

    WANG Haoran, WANG Zhiliang, WANG Xingchen. Particle flow simulation of deformation and failure process of defective rock samples under triaxial compression[J]. Hydro-Science and Engineering, 2021(4): 46-53. (in Chinese) doi: 10.12170/20200912001
    [9]
    李学华, 牛志军, 姚强岭, 等. 孔洞式三叉裂隙砂岩裂纹扩展特征颗粒流分析[J]. 煤炭学报,2020,45(11):3735-3747

    LI Xuehua, NIU Zhijun, YAO Qiangling, et al. Particle flow analysis of crack propagation characteristics of hole-type trident cracks sandstone[J]. Journal of China Coal Society, 2020, 45(11): 3735-3747. (in Chinese)
    [10]
    HAERI H, SHAHRIAR K, MARJI M F, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 20-28. doi: 10.1016/j.ijrmms.2014.01.008
    [11]
    HAERI H, SHAHRIAR K, MARJI M F, et al. On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression[J]. Strength of Materials, 2014, 46(1): 140-152. doi: 10.1007/s11223-014-9525-y
    [12]
    LINDAWATI L, MURSAL M, AFDHAL A. Determination of mineral contents in meukek marble using XRD and SEM-EDS analysis[J]. IOP Conference Series Materials Science and Engineering, 2019, 506: 012023. doi: 10.1088/1757-899X/506/1/012023
    [13]
    李建欣. XRD全谱拟合精修对贵州煤中矿物质的定量研究[D]. 焦作: 河南理工大学, 2009.

    LI Jianxin. X-Ray diffraction rietveld refinement method quantitative phase analysis minerals in coals Guizhou Province[D]. Jiaozuo: Henan Polytechnic University, 2009. (in Chinese)
    [14]
    郭常霖. 多晶材料X射线衍射无标样定量方法[J]. 无机材料学报,1996(1):1-8 doi: 10.3321/j.issn:1000-324X.1996.01.001

    GUO Changlin. X-ray standardless quantitative analysis method for polycrystalline materials[J]. Journal of Inorganic Materials, 1996(1): 1-8. (in Chinese) doi: 10.3321/j.issn:1000-324X.1996.01.001
    [15]
    胡训健, 卞康, 刘建, 等. 花岗岩晶体粒径分布对声发射特性影响的颗粒流模拟[J]. 煤炭学报,2021,46(增刊2):721-730

    HU Xunjian, BIAN Kang, LIU Jian, et al. Particle flow simulation of the influence of granite crystal size distribution on acoustic emission characteristics[J]. Journal of China Coal Society, 2021, 46(Suppl2): 721-730. (in Chinese)
    [16]
    胡训健, 卞康, 刘建, 等. 细观结构的非均质性对花岗岩蠕变特性影响的离散元模拟研究[J]. 岩石力学与工程学报,2019,38(10):2069-2083

    HU Xunjian, BIAN Kang, LIU Jian, et al. Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2069-2083. (in Chinese)
    [17]
    POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677-691. doi: 10.1016/j.ijrmms.2006.10.002
    [18]
    LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785-3817. doi: 10.1007/s00603-018-1566-2
    [19]
    丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报,2015,37(6):1031-1040 doi: 10.11779/CJGE201506009

    CONG Yu, WANG Zaiquan, ZHENG Yingren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. (in Chinese) doi: 10.11779/CJGE201506009
    [20]
    于辉, 刘少伟, 贾后省, 等. 不同围压下闭合单裂隙砂岩力学响应及能量耗散机制研究[J]. 采矿与安全工程学报,2020,37(2):385-393 doi: 10.13545/j.cnki.jmse.2020.02.019

    YU Hui, LIU Shaowei, JIA Housheng, et al. Mechanical response and energy dissipation mechanism of closed single fractured sandstone under different confining pressures[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 385-393. (in Chinese) doi: 10.13545/j.cnki.jmse.2020.02.019
    [21]
    黄达, 岑夺丰. 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报,2013,32(9):1926-1936 doi: 10.3969/j.issn.1000-6915.2013.09.026

    HUANG Da, CEN Duofeng. Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936. (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.09.026

Catalog

    Article views (132) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return