窝崩抢护治理中树头石阻水效果试验研究

袁文秀, 应强, 罗龙洪, 张幸农, 假冬冬

袁文秀,应强,罗龙洪,等. 窝崩抢护治理中树头石阻水效果试验研究[J]. 水利水运工程学报,2021(3):119-125. DOI: 10.12170/20200623001
引用本文: 袁文秀,应强,罗龙洪,等. 窝崩抢护治理中树头石阻水效果试验研究[J]. 水利水运工程学报,2021(3):119-125. DOI: 10.12170/20200623001
(YUAN Wenxiu, YING Qiang, LUO Longhong, et al. Experimental study on the water blocking effect of tree head-stone in the treatment of pit collapse[J]. Hydro-Science and Engineering, 2021(3): 119-125. (in Chinese)). DOI: 10.12170/20200623001
Citation: (YUAN Wenxiu, YING Qiang, LUO Longhong, et al. Experimental study on the water blocking effect of tree head-stone in the treatment of pit collapse[J]. Hydro-Science and Engineering, 2021(3): 119-125. (in Chinese)). DOI: 10.12170/20200623001

窝崩抢护治理中树头石阻水效果试验研究

基金项目: 国家重点研发计划资助项目(2018YFC0407302);国家自然科学基金资助项目(U2040215,52079080,51779148);江苏省水利科技项目(2018021)
详细信息
    作者简介:

    袁文秀(1971—),女,江苏南京人,高级工程师,主要从事水利规划及长江治理等工作。E-mail:962196272@qq.com

  • 中图分类号: TV148

Experimental study on the water blocking effect of tree head-stone in the treatment of pit collapse

  • 摘要: 河堤窝崩发生后,首先需要确定的是抢护治理方案,减缓窝塘流速,遏制窝塘进一步发展。在诸多抢护治理方案中,树头石方案具有较好的减速促淤效果,但树头高度和抛投间距在以往的设计中都是依经验确定,缺乏理论基础和试验依据。通过制作长江扬中河段指南村窝崩模型,在窝崩口门附近流速模拟相似的基础上,对窝塘内同一高度3种间距的树头石排列型式和同一间距3种高度的树头石进行了试验,用三点法测量了窝塘内12个点的流速、流向。试验结果表明:窝塘内表层流速受惯性影响较大,底层流速受地形影响较大;窝塘内布置不同高度和不同间距的树头石时,平均流速随树头石高度的增加而减小,随树头石间距的减小而减小,窝内流速的减小,意味着泥沙淤积强度的增大;另一方面,树头石高度的增大和间距的减小,都会增加工程的投资成本,研究认为在相对树高为0.15、间距为6 m×6 m时综合效果较佳。
    Abstract: An effective emergency treatment for the pit collapse is vital to slow down the flow velocity of the pit pond and prevent the further development of the pit pond. The scheme of tree head-stone has been widely used in engineering application owing to its capacity of promoting siltation. The height and the spacing distance of the tree head-stone were generally determined by engineering experience, and these empirical values were short of theoretical and experimental basis. The arrangements of tree head-stone in pit collapse were tested using the physical model at Zhinan village, along the Yangzhong embankment of the Yangtze River. In this study, three heights and three spacing distances were orthogonally combined in the testing scheme, and the flow direction and velocity were measured at 12 locations using the three point method. Based on the analysis of the experimental results, the surface velocity was greatly affected by inertia, and the bottom velocity was dominantly controlled by the topography of riverbed. In comparison of the experiments with different heights and spacing distances, the mean flow velocity increased with the spacing distance of the stone, but decreased with the increasing height of the tree head. The resulting low flow velocity increased the possibility of siltation. Because the investment cost would increase with the height of tree head and the low spacing distance of stone, the best relative height of tree head and the spacing distance of stone were 0.15 and 6 m×6 m, respectively.
  • 图  1   模型范围及试验测点示意(绿线为河床地形)

    Figure  1.   Scope of physical model and test points

    图  2   树头石和模型中用的塑料树和塑料草

    Figure  2.   Tree head-stone and plastic trees and grass for the model

    图  3   塑料树6 m×6 m排列照片

    Figure  3.   Plastic tree 6 m×6 m arrangement photos

    图  4   无工程时窝塘附近表面流场分布(PIV测)

    Figure  4.   Surface flow field near model without engineering (using Particle Image Velocimetry technology)

    图  5   工程前窝内流速分布

    Figure  5.   Velocity distribution in the pond without engineering

    图  6   相对树高0.22时按 3 m×3 m间距布置后窝塘内的流速分布

    Figure  6.   Velocity distribution under 3 m×3 m spacing with the relative tree height of 0.22

    图  7   相对树高0.22时不同间距排列下窝内流速比较

    Figure  7.   Velocity comparison of model measuring points under different spacing arrangements with the relative tree height of 0.22

    图  8   树头石密度与相对流速关系

    Figure  8.   Relationship between density of tree head-stone and water velocity

    图  9   6 m×6 m间距排列时不同相对树高下窝内流速比较

    Figure  9.   Velocity comparison of model measuring points under different relative tree heights with 6 m ×6 m spacing arrangement

    图  10   树头石相对高度与相对流速关系

    Figure  10.   Relationship between relative tree height and water velocity

    表  1   模型测点流速验证

    Table  1   Verification of velocity of measuring points in physical model

    模型流量/(m3·s−1)各测点流速/(m·s−1)
    1234
    验证值 28 500 0.678 1.158 0.705 0.750
    要求值 0.657 1.098 0.671 0.792
    下载: 导出CSV
  • [1] 罗龙洪, 苏长城, 应强, 等. 长江扬中河段指南村窝崩原因分析[J]. 江苏水利,2019(增刊2):65-69, 80. (LUO Longhong, SU Changcheng, YING Qiang, et al. Analysis on the causes of arc collapsing in Zhinan Village Yangzhong Reach of the Yangtze River[J]. Jiangsu Water Resources, 2019(Suppl2): 65-69, 80. (in Chinese)
    [2]

    TORREY III V H, DUNBAR J B, PETERSON R W. Retrogressive failures in sand deposits of the Mississippi River, Report 1: field investigations, laboratory studies and analysis of the hypothesized failure mechanism[R]. Vicksburg: Waterway Experiment Station, 1988.

    [3]

    MIDGLEY T L, FOX G A, HEEREN D M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks[J]. Geomorphology, 2012, 145/146: 107-114. doi: 10.1016/j.geomorph.2011.12.044

    [4] 张幸农, 蒋传丰, 陈长英, 等. 江河崩岸的类型与特征[J]. 水利水电科技进展,2008,28(5):66-70. (ZHANG Xingnong, JIANG Chuanfeng, CHEN Changying, et al. Types and features of riverbank collapse[J]. Advances in Science and Technology of Water Resources, 2008, 28(5): 66-70. (in Chinese) doi: 10.3880/j.issn.1006-7647.2008.05.017
    [5]

    LANGENDOEN E J, SIMON A. Modeling the evolution of incised streams. Ⅱ: streambank erosion[J]. Journal of Hydraulic Engineering, 2008, 134(7): 905-915. doi: 10.1061/(ASCE)0733-9429(2008)134:7(905)

    [6] 假冬冬, 陈长英, 张幸农, 等. 典型窝崩三维数值模拟[J]. 水科学进展,2020,31(3):385-393. (JIA Dongdong, CHEN Changying, ZHANG Xingnong, et al. 3-D numerical simulation of the Ω caving in riverbanks[J]. Advances in Water Science, 2020, 31(3): 385-393. (in Chinese)
    [7] 应强, 张幸农, 孙波. 长江窝崩机理研究现状的述评[C]∥长江护岸及堤防防渗工程论文选集. 北京: 中国水利水电出版社, 2003: 84-91.

    YING Qiang, ZHANG Xingnong, SUN Bo. Review on the research status of collapse mechanism in the Yangtze River[C]∥Selected Papers on Anti Seepage Engineering of Yangtze River Revetment and Dyke. Beijing: China Water & Power Press, 2003: 84-91. (in Chinese)

    [8] 陈引川, 彭海鹰. 长江下游大窝崩的发生及防护[C]∥长江中下游护岸论文集(第三集). 武汉: 长江水利水电科学研究院, 1985: 112-117.

    CHEN Yinchuan, PENG Haiying. Occurrence and protection of large caved collapse in the lower reaches of the Yangtze River[C]∥Collection of Bank Protection in the Middle and Lower Reaches of the Yangtze River (the 3rd issue). Wuhan: Yangtze River Water Conservancy and Hydropower Research Institute, 1985: 112-117. (in Chinese)

    [9] 余文畴, 苏长城. 长江中下游“口袋型”崩窝形成过程及水流结构[J]. 人民长江,2007,38(8):156-159. (YU Wenchou, SU Changcheng. Formation process and flow structure of pocket collapse in the middle and lower reaches of the Yangtze River[J]. Yangtze River, 2007, 38(8): 156-159. (in Chinese) doi: 10.3969/j.issn.1001-4179.2007.08.058
    [10] 应强, 张幸农, 罗龙洪, 等. 基于父子型窝塘地形变化探讨窝崩机理[J]. 水利水运工程学报,2020(3):37-42. (YING Qiang, ZHANG Xingnong, LUO Longhong, et al. Discussion on the mechanism of pit collapse based on topographic change of the father-son’s caving pond[J]. Hydro-Science and Engineering, 2020(3): 37-42. (in Chinese)
    [11] 丁普育, 张敬玉. 江岸土体液化与崩塌关系的探讨[C]∥长江中下游护岸工程论文集(第三集). 武汉: 长江水利水电科学研究院, 1985: 104-109.

    DING Puyu, ZHANG Jingyu. Discussion on the relationship between soil liquefaction and collapse in river bank[C]∥Collection of Bank Protection in the Middle and Lower Reaches of the Yangtze River (the 3rd issue). Wuhan: Yangtze River Water Conservancy and Hydropower Research Institute, 1985: 104-109. (in Chinese)

    [12] 牛晨曦, 张幸农, 应强, 等. 流滑型窝崩水流运动和地形变化概化模拟试验[J]. 水利水运工程学报,2019(4):17-23. (NIU Chenxi, ZHANG Xingnong, YING Qiang, et al. Generalized simulation tests on flow movement and slope topography change of riverbank flow-induced slide with nest shape[J]. Hydro-Science and Engineering, 2019(4): 17-23. (in Chinese) doi: 10.12170/201904003
    [13] 张幸农, 陈长英, 假冬冬, 等. 流滑型窝崩特征及概化模拟试验[J]. 水利水运工程学报,2011(4):13-17. (ZHANG Xingnong, CHEN Changying, JIA Dongdong, et al. Lab test study on mechanism of bank flow-induced slide with nest shape in the middle and lower reaches of the Yangtze River[J]. Hydro-Science and Engineering, 2011(4): 13-17. (in Chinese) doi: 10.3969/j.issn.1009-640X.2011.04.002
    [14] 章志强, 臧英平, 仲琳, 等. 三江口窝崩及抢护[J]. 水利水运工程学报,2011(2):71-76. (ZHANG Zhiqiang, ZANG Yingping, ZHONG Lin, et al. Pit collapse and emergency protection at the Sanjiangkou riverbank[J]. Hydro-Science and Engineering, 2011(2): 71-76. (in Chinese) doi: 10.3969/j.issn.1009-640X.2011.02.011
    [15] 罗龙洪, 苏长城, 应强, 等. 长江扬中河段指南村窝崩应急治理及效果分析[J]. 江苏水利,2020(2):25-28. (LUO Longhong, SU Changcheng, YING Qiang, et al. Emergency treatment and effect analysis of arc collapsing in Zhinan Village, Yangzhong Reach of the Yangtze River[J]. Jiangsu Water Resources, 2020(2): 25-28. (in Chinese)
    [16] 孙信德, 蔡元裕, 姚文庆. 采用沉树头石治理长江江岸崩窝的实践[J]. 水利管理技术,1996(4):45-47. (SUN Xinde, CAI Yuanyu, YAO Wenqing. Practice of using sunken tree head stone to control collapse of Yangtze River Bank[J]. Water Management Technology, 1996(4): 45-47. (in Chinese)
    [17] 关德新, 朱廷曜, 韩士杰. 单株树的阻力系数模式[J]. 林业科学,2011,37(6):11-14. (GUAN Dexin, ZHU Tingyao, HAN Shijie. Theoretical model of drag coefficient of isolated tree[J]. Scientia Silvae Sinicae, 2011, 37(6): 11-14. (in Chinese)
    [18] 姬昌辉, 洪大林, 丁瑞. 含淹没植被明渠水位及糙率变化试验研究[J]. 水利水运工程学报,2003(1):60-65. (JI Changhui, HONG Dalin, DING Rui, et al. Variation characteristics of water level and roughness of an open channel with submerged vegetation[J]. Hydro-Science and Engineering, 2003(1): 60-65. (in Chinese)
图(10)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2021-06-14

目录

    /

    返回文章
    返回